A Metacognitive Model of Memory Encoding Modulated by Rewards

Si Ma (si.ma@rutgers.edu)
Department of Psychology
Rutgers University—New Brunswick
Piscataway, NJ 08854 USA

Qiong Zhang (qiong.z @rutgers.edu)
Department of Psychology, Department of Computer Science, Rutgers Center for Cognitive Science
Rutgers University—New Brunswick
Piscataway, NJ 08854 USA

Abstract

Despite robust empirical evidence supporting the role of re-
ward in enhancing memory, the relationship between reward
and memory shows complex patterns. We present a novel com-
putational model that considers how people optimally allocate
limited cognitive resources during memory encoding. Unlike
previous accounts, which assume that higher rewards directly
lead to stronger memory encoding, we allow our model to
adaptively decide how much to encode for each item based on
the overall reward environment and one’s limited cognitive re-
sources. Our model’s predictions align closely with human re-
call patterns across three experiments. It successfully explains
why high-reward items are better remembered than low-reward
items only when they are presented together but not separately
(Exp 1). Analyzing an existing dataset (Exp 2), our model ac-
counts for how memory is modulated not only by the current
reward but also by the rewards of preceding (but not future)
items. To further test our proposed model, we collected new
data (Exp 3) demonstrating that this insensitivity to rewards of
future items can be reversed when participants can anticipate
upcoming reward values. These findings provide evidence that
memory encoding is an active process involving meta-level
control, where cognitive resources are strategically allocated
to maximize overall rewards, rather than a passive response to
individual reward values.

Keywords: reward, memory encoding, metacognition, ratio-
nal analysis

Instructions

The ability to selectively encode information is an adaptive
feature of episodic memory. It is rational to prioritize re-
sources and effort in encoding information associated with
higher rewards than those with lower rewards. Previous stud-
ies found that people better remember information if it will
help them gain reward (Bowen et al.,|2020; Gong & Li, 2014}
Grandoit et al.,[2024; Manga et al.,|2020; Middlebrooks et al.,
2017; Talmi et al., [2021)). Multiple accounts have been pro-
posed to explain this phenomenon of reward-enhanced mem-
ory. For instance, high-reward items may capture greater at-
tention than low-reward items (Allen & Ueno, 2018} Sandry
& Ricker, |2020), be more deeply encoded (Castel, [2007; Co-
hen et al., [2014), or receive more selective study (Castel et
al., 2013). These accounts are consistent with a computa-
tional implementation in which memory encoding strength
increases when reward increases (Talmi et al., [2021; Zhou et
al., [2023). Despite robust empirical evidence supporting the
role of reward in enhancing memory, this relationship does
not always hold and the influence of reward on memory for-
mation can exhibit more complex patterns. The goal of the

present work is to propose a novel account of reward’s effect
on memory that can reconcile a range of empirical findings.

While high-reward items are generally better remembered
than low-reward items, Talmi et al. (2021) discovered an in-
triguing exception. This memory advantage only exists when
high- and low-reward items are mixed within the same list
(e.g., “LHLLHLL"; mixed-list condition) but not when they
are presented in separate lists (e.g., “LLLLLLL” or “HHH-
HHHH”; pure-list condition). These effects have been repli-
cated in several follow-up studies (Hellerstedt & Talmi, [2022;
Hellerstedt et al.,2023)). This raises an important question: if
people are rational in selectively remembering more valuable
information, why would they recall an equal amount from a
high-reward list compared to a low-reward list? Past research
has shown that memory behavior reflects not only how peo-
ple adapt to environmental goals but also the computational
limitations imposed by human cognitive architecture (Ander-
son, [1990; Callaway et al., 2024; Lieder & Griffiths, 2020;
Lu et al., [2024; Van den Berg & Ma, 2018; Xu et al., 2024;
Zhang et al., |2023). We hypothesize that better memory for
high-reward items results from the adaptive allocation of lim-
ited cognitive resources to these items. High-reward items are
better remembered than low-reward items only when they are
presented together, as more cognitive resources are allocated
to high-reward items when they are directly competing with
low-reward items.

To formally test our hypothesis, we build a novel metacog-
nitive model of memory encoding and validate our model
against three sets of experimental results, including the dif-
ference between pure-list and mixed-list conditions (Talmi
et al., 2021). We propose that metacognitive mechanisms
play a key role in memory encoding. We draw inspiration
from early theoretical developments in the metamemory lit-
erature (Nelson, |1990), which posit that our memory sys-
tem includes an additional “meta-level” component. This
meta-level component adaptively controls ongoing memory
processes by monitoring the current state of memory (at the
object-level) with the goal of maximizing performance (see
Figure [T). While long-term memory storage is vast (Brady
et al., [2008), our ability to recall information is constrained
by moment-to-moment fluctuations during encoding (Noh et
al., 2014 Paller & Wagner, |2002; Sundby et al., 2019). Re-
cent theoretical advances in computational modeling have
linked memory performance with the amount of cognitive re-
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Figure 1: Our proposed framework. Meta-level monitors the
state of memory encoding (e.g., available resources, reward,
and serial position) and controls how to allocate cognitive re-
sources to optimize overall rewards.

sources available when encoding items into long-term mem-
ory (Popov & Reder, 2020; Reder et al.,[2000, |2007). The as-
sumption of a finite amount of cognitive resources that needs
time to recover after depletion (i.e., resource-depletion-and-
recovery assumption) can account for numerous behavioral
(Kowialiewski et al., 2021; Mizrak & Oberauer, 2021; Ober-
auer, |2022; Popov & Reder, [2020; Popov et al., 2019} |2022)
and neural findings (Ma et al.,[2024). Given these constraints
at memory encoding, we hypothesize that a “meta-level” pro-
cess continuously monitors the memory state and strategi-
cally determines how to allocate cognitive resources.

Critically, when different rewards are present, our hypoth-
esis differs from accounts where the strength of memory en-
coding is directly related to the reward magnitude of a given
item (Talmi et al., [2021). Instead, we posit that the strength
of memory encoding is a consequence of optimizing total re-
ward gain through the adaptive allocation of limited cognitive
resources. Our proposed model is supported by three sets of
experimental results:

e In Experiment I, we simulated our model based on the
same reward structures as those used by Talmi et al. (2021).
Under the constraints of limited cognitive resources, we
obtained the optimal policy to allocate these resources to
each item in order to maximize total rewards. The opti-
mal behavior aligns with observations from Talmi et al.
(2021) where high-reward items were better remembered
than low-reward items in mixed lists but not in pure lists.

e In Experiment II, we further examined how items with
varying rewards within a list compete for allocation of
limited cognitive resources, analyzing a publicly shared
dataset with rewards ranging from 1 to 10 (Middlebrooks et
al.,[2017)). We showed that an item’s memory performance
is not only modulated by its associated reward but also
by the rewards of preceding (but not future) items. These
observations align with the model predictions, where re-
sources allocated to each item depend not only on its asso-
ciated reward but also on the overall reward environment.

* In Experiment III, we collected a new dataset to provide
a strong test for our proposed model. Although there was
no effect of future reward in Experiment II, our model pre-
dicts that if people are rational in allocating limited cogni-
tive resources, they should reserve them when anticipating
high-reward items in the near future.

Metacognitive model

In this section, we specify the details of the proposed
metacognitive model. The model aims to capture the en-
coding processes of a list-learning paradigm, where partici-
pants first study a list of items, and then attempt to recall as
many items as they can from the list in any order (free re-
call task; Murdock Jr, |[1962; Roberts, |1972; Standing, |1973)).
The model consists of two processes: an object-level process
responsible for memory encoding, and a meta-level process
that monitors and adaptively controls the encoding process
(Figure [I). The interaction between the object-level and the
meta-level is a continuous process. As each item in a study
list is presented to the model one after another, the meta-level
determines the amount of resources to allocate based on in-
formation from the object-level and the object-level uses the
allocated resources to strengthen the memory and moves on
to the next word. This process repeats until the end of the list
and the model is asked to recall all the items from the list.

Object-level model

At the object-level, we follow the model implementation from
prior studies in characterizing how items are encoded into
episodic memory under the resource-depletion-and-recovery
assumption (Ma et al., 2024; Popov & Reder, |2020; Reder et
al.,[2007). The assumption has been supported by numerous
behavioral (Kowialiewski et al., [2021; Mizrak & Oberauer,
2021; Oberauer, 2022; Popov & Reder, [2020; Popov et al.,
2019, 2022) and neural findings (Ma et al., [2024)).

At the beginning of studying a list of items, the amount
of resources available is at its maximum (W,,,x = 1). Upon
studying an item at position k, a proportion (t) of currently
available resources, Wy, is depleted for semantically process-
ing the item, expressed as:

Wsemik = TWg (D

Meantime, a proportion (8) of currently available resources
(Wi — Wyem i) is allocated to encode the item into episodic
memory, expressed as:

Wepi,k =90 (Wk - erm,k) (2)

The memory strength of the encoded item (B,p; x) depends
on the amount of resources allocated to it:

Bepi,k = Wepi,k (3)

The amount of resources is finite, and once depleted it
needs time to recover. Resources recover linearly at a rate
of r per second until it reaches W,,,,. Therefore, the amount
of resources at the beginning of encoding the next item at po-
sition k4 1 follows:

Wir1 = min(Wmax»Wk — Weemx — Wepi,k + rtk) “4)

where #;, is the time between item presentations.



The larger the memory strength B,p; x, the higher the prob-
ability of recalling the item at position k, expressed as:

Be ikfeei
=@ = 5
Pk ( o ) 5

where ® represents the cumulative distribution function of the
standard normal distribution, with 0,,; and G,p; as the mean
and the standard deviation used to standardize B, k.

Meta-level model

While resource-based memory models have traditionally as-
sumed passive allocation of resources with a fixed value of
8 (Popov & Reder, 2020; Reder et al., 2000, 2007), our pro-
posed model will examine the adaptive allocation of these re-
sources through metacognitive control. The meta-level pro-
cess addresses the problem of how much cognitive resources
to allocate by varying & for each item to maximize overall re-
ward gain. To obtain the optimal policy for this behavior, we
use a reinforcement learning framework (Mnih et al., 2015}
Sutton, 2018)), where the agent at the meta-level receives the
state information S and the reward information R from the
object level (in a monitoring process) and determines what
action A to take (in a control process) to maximize cumula-
tive rewards over time.

e States (S): In our model, s; contains the information
needed to characterize the current state of memory when
encoding an item at position k, including 1) the amount of
resources available Wy, 2) the property (i.e., reward ry) of
the current item being encoded, and 3) how far has it been
in the list (i.e., k).

* Actions (A): A is the action the agent takes. In our model,
ay is the proportion (8) of currently available resources al-
located to the item at position k, ranging from O to 1.

* Reward (R): Ry is the reward received by the agent after
taking an action gy at item position k:

Ry = YE (pi-r), ifk=L
0, otherwise

(6)

where p; is the probability of the item at position i being
recalled later (Equation (3)), r; is the reward assigned to the
item, and L is the list length. Neither participants nor the
model has access to item-specific recall probabilities at the
time of encoding the item. A reward was determined and
delivered only after the presentation of the full list (Iength
L). Participants are informed of their rewards for a given
list after their recall attempts, and the model uses the above
equation to approximate the rewards.

* Policy (m): = is a policy that decides which action to take
at a given state s. At each position &, the agent aims to
maximize the expected discounted return from the current
position k& to the end of the list:

L—k
Gi=Y YR ©)
t=0

where v is the discount factor that controls the relative
importance of future versus immediate rewards. We set
v=0.95. The agent’s objective is to learn an optimal pol-
icy ©* that maximizes the expected return:

" = arg max Ex [Gi] (8)

We used RecurrentPPO (Raffin et al., 2021)), an instance
of policy-gradient methods (Schulman et al.,|[2017), to find
the optimal behavior of metacognitive control T*.

Model setup and simulations

To generate model predictions for specific experiments, we
set up the list and reward structure to be identical to the ex-
periment that we aim to model. Parameters at the object-level
describe constraints of cognitive resources, which we inher-
ited from previous implementations of resource-based mem-
ory models (t=0.072, r = 0.08, 6,p; = 0.367, G,p; = 0.256; Ma
et al.,|2024). We then obtained how the model optimally al-
locates cognitive resources to each item (8) when faced with
different list and reward structures in a given experimental
design. Importantly, the model has never been directly fitted
to the empirical patterns it seeks to explain. Instead, resource
constraint parameters are fixed based on previous studies, and
resource allocation behavior is derived through optimization.
As a result, the model’s outcomes serve as model predictions
generated by the proposed theoretical framework.

Experiment I

Many studies support that high-reward items are better re-
membered than low-reward ones (Gong & Li, 2014} Grandoit
et al., [2024; Middlebrooks et al., 2017; Talmi et al., 2021).
However, this memory advantage disappears when high-
reward items and low-reward items are studied in separate
lists (Talmi et al., 2021). In Experiment I, we sought to ex-
plain this effect by proposing that participants adaptively al-
locate limited cognitive resources during memory encoding
in a metacognitive process. Our proposed model was set up
based on the same stimuli, rewards, and trial structure as in
Talmi et al. (2021) and was trained to maximize its overall
reward gain. We then compared the recall patterns predicted
by the model with those of the experiment.

Talmi et al. (2021)

29 participants were recruited (aged 18-21; Experiment 1 in
Talmi et al., 2021) and were asked to complete a free re-
call task. In each trial, participants were presented with a
list of 16 pictures, each of which lasted for 2 seconds fol-
lowed by a randomized interval (of approximately 4 seconds)
of white screen. Immediately following the list presenta-
tion, participants completed a distractor task for 60 seconds
after which they were given 3 minutes to describe the pic-
tures they remembered in any order. Some pictures were
framed and recalling those would give participants a high re-
ward of £1, while unframed pictures had a lower reward of
10 pence. Each participant completed six trials: two trials
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Figure 2: High-reward items are better remembered than low-
reward items only in mixed lists (e.g., LHLLHL) but not in
pure lists (e.g., LLLLLL, HHHHHH), shown for both (a)
behavioral data reproduced from Figure 2A in Talmi et al.
(2021) and (b) model predictions.

of high-reward pure lists, two trials of low-reward pure lists,
and two trials of mixed lists (half low-reward and half high-
reward pictures).

Results and Discussions

We observed an alignment between model predictions (Fig-
ure[Zp) and human recall patterns (Figure[Zp) in pure lists ver-
sus mixed lists. Specifically, high-reward items were better
recalled than low-reward items in mixed lists but not in pure
lists. Our model captures these effects: In mixed lists, high-
reward items and low-reward items compete directly for lim-
ited cognitive resources, with high-reward items prioritized
over low-reward items. In contrast, in pure lists, competition
occurs between items with the same rewards, so there is no
clear advantage in allocating more resources to some items
over others. As the total amount of available resources re-
mains the same across both high-reward and low-reward pure
lists, items within each list receive comparable resources dur-
ing encoding. The alignment between model predictions and
human recall patterns supports our hypothesis that partici-
pants adaptively allocate limited cognitive resources during
memory encoding based on reward levels.

Experiment 1T

Our model can explain recall patterns in Experiment I through
competitions between items for limited resources during en-
coding controlled by a meta-level process. The goal of Ex-
periment II is to further investigate these mechanisms by ex-
amining how memory for a specific item is affected by other
list items across more fine-grained reward magnitudes. We
analyzed a publicly shared dataset with fine-grained reward
magnitudes ranging from 1 to 10 points (Middlebrooks et al.,
2017). If items compete for limited cognitive resources dur-
ing encoding, as our model proposes, we would expect an
item’s reward value to influence not only its own recall per-
formance but also that of temporally adjacent items in the
study list.

Middlebrooks et al. (2017)

72 participants were recruited and asked to complete a free
recall task. Participants were presented with six trials each

containing a list of 20 words with a presentation rate of 3
seconds. Each word was given a reward value ranging from
1 to 10 points, with two words allocated to each point value
per list, analogous to the mixed list condition in Experiment
I. Immediately after the list presentation, participants were
asked to recall the words in any order and maximize their total
points. While participants showed varying degrees of sensi-
tivity to reward values, we focused our analysis on the half of
participants who demonstrated stronger reward sensitivity, as
measured by the slope of a linear mixed-effects model fitted
to their recall performance.

Results and Discussions

Our model predictions align well with human data, reveal-
ing key patterns in the adaptive control of cognitive resources
during encoding. Using a dataset with fine-grained reward
values ranging from 1 to 10 points, we first examine how
an item’s reward value affects its own recall performance.
Specifically, we analyzed the influence of reward at position
k (ry) on the recall probability of the word at the same po-
sition (my; Figure Bp). As shown in Figure 3p, participants
had an increasingly better recall performance as the reward
value increased (linear mixed-effects model: B =0.063,SE =
0.003,#(323) = 24.286, p < 0.01), consistent with our model
predictions (Figure [3t). This result reproduces the same ef-
fects in the mixed list condition in Experiment 1 (Figure [2)).
Our model successfully captures these effects regardless of
the granularity of reward levels.

While alternative accounts could explain why memory per-
formance increases as a function of reward for the item at the
same position, our model makes unique predictions on how
reward affects the memory performance of adjacent items in
a study list. Specifically, our model predicts that while a
higher reward r; for an item increases the recall probability
for that item my (Figure Eh), it decreases the recall proba-
bility for the subsequent item nyy; (Figure [Bf). This pre-
diction results from the limited cognitive resources during
encoding: once resources are depleted, they require time to
recover. When more cognitive resources are depleted in en-
coding an item with a higher reward at position k, fewer re-
sources remain available to encode the subsequent item at
position k + 1, resulting in lower recall probability at posi-
tion k+ 1. Furthermore, although reward at position k affects
the recall probability of the subsequent item at position k + 1
(forward direction; Figure |3|f), it leaves the recall probabil-
ity of the preceding item at position k — 1 unchanged (back-
ward direction; Figure Eﬁ). No reward effect was shown in
the backward direction because cognitive resources that have
already been allocated to the item at position k — 1 cannot be
reallocated or released, even if a high-reward item is subse-
quently encountered at position k. Recall patterns in Mid-
dlebrooks et al. (2017) align with model predictions, with
an effect of r; on my4; in the forward direction (Figure B;
B =—-0.012,SE = 0.003,#(323) = —4.64,p < 0.01), but no
effect of r; on my_; in the backward direction (Figure ; B=
—0.005,SE =0.003,#(323) = —1.836, p = 0.067). While ex-
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Figure 3: The effect of reward magnitude (from 1 to 10) on the recall probability of the current (a-c), subsequent (d-f), and
preceding item (g-i) shown for both behavioral data (middle column) and model predictions (right column).

isting accounts of rewards can explain the enhanced memory
for high-reward versus low-reward items, the effect of reward
in the forward direction and a lack of effect in the backward
direction, along with evidence from Experiment I, are unique
evidence supporting our proposed model. These results sup-
port our hypothesis that limited cognitive resources and spe-
cific reward environments jointly shape memory behavior.

Experiment I11

In this experiment, we introduced a novel manipulation and
collected a new dataset to provide a strong test for our pro-
posed metacognitive model. Previously, we have shown that
rewards affect temporally adjacent items but only in the for-
ward direction. This is because of the constraint that after
resources are allocated to an item at position k — 1, they can-
not be reallocated or released even upon seeing a high-reward
item at position k. While the reward of an item was not known
to participants in Experiments I and II until the item was pre-
sented, we designed an experiment where participants were
informed of the reward structure of an entire list ahead of
its presentation. We hypothesize that with the knowledge of
upcoming rewards when encoding an item, participants can
adaptively adjust their resource allocation at the current po-
sition according to rewards at future positions. This would
provide a strong test for our proposed account of reward ef-
fects on memory. As participants have limited time to learn
the reward values for an entire list, we simplified the reward
structure for participants to learn and used short lists consist-
ing of six words per list with at most one switch in reward
values mid-list, “HHHHHH”, “HHHLLL”, “LLLHHH”, and
“LLLLLL". Under this simplified reward structure, we then
examined how reward values of the first or second half of the
list influence the recall performance of the current half, the
preceding half, and the subsequent half of the list. The exper-

iment, analyses, and model predictions were pre-registered
(https://aspredicted.org/jyx6-mdgh.pdf).

Methods

Participants 125 participants (aged 18-40) were recruited
on the Prolific platform. They were all fluent English speak-
ers and consented to participate in the study. Following
our preregistered exclusion criteria, we excluded participants
who failed the attention check, quit halfway, or reported using
external help or indicating a lack of diligence in completing
the task. 71 participants remained in our analysis.

Stimuli  All word trials were randomly selected from a prior
word pool of 326 words (Polyn et al., 2011). Each trial con-
tained six words, each belonging to a different semantic cate-
gory (Polyn et al.,2011)). Some words were displayed with a
gray rectangular frame around them, indicating a high-reward
value (3 points), while unframed words carried a low-reward
value (1 point). The experiment included four different types
of reward structures across lists: “HHHHHH”, “HHHLLL”,
“LLLHHH”, and “LLLLLL”". Participants were informed of
the reward structure before each list presentation. Each par-
ticipant completed 17 trials in total, including one practice
trial at the beginning and 16 experimental trials (four trials
for each reward structure). The order of experimental trials
was randomized for each participant.

Procedure Participants completed a free recall task. In
each trial, they were presented with six words, displayed se-
quentially. Each word appeared on the screen for two sec-
onds, followed by a 0.5-second blank screen. Words were
either framed or unframed, with framed words awarding high
rewards (3 points) and unframed words awarding low rewards
(1 point). At the beginning of each trial, participants were in-
formed of the reward structure for the upcoming list. As each
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Figure 4: The effect of reward on recall probability across
serial positions for behavioral data (a) and model predictions
(b) for each list type. The effect of reward on the recall prob-
ability of the current (c-e), subsequent (f-h), and preceding
items (i-k), shown for both the behavioral data (middle col-
umn) and model predictions (right column).

word was presented, they performed a size judgment task by
pressing “Q” if the word was smaller than a shoebox or “P”
if it was larger. To receive any points for a list, participants
had to correctly classify more than half of the words in the
list. This task was designed as an attention check. Following
the list presentation, participants completed a 12-second dis-
tractor task, during which they solved three math problems in
the form of A + B + C = 7. Bonuses were awarded based on
their performance. After the distractor task, participants had
15 seconds to recall the words from the just-presented list in
any order. Their objective was to maximize their total reward
points which influenced their final payment. The experiment
was implemented using PsiTurk and Heroku and lasted ap-
proximately 25 minutes.

Results and Discussions

Figure p and b compare human recall patterns and model
predictions for the recall probability across different serial po-
sitions for each list type. We analyzed the effect of reward
values on current, subsequent, and preceding items following
a similar approach to the analyses conducted in Experiment
II. Recall probabilities were averaged for each half of the list.

Consistent with the results of Experiment II, when comparing
rewards and recall probabilities in the same or different halves
of a list (Figure [k, @, and [4}), we found that while high-
reward items were better remembered than low-reward items
(one-tailed Wilcoxon signed-rank test; V = 252.5, P < 0.01;
Figure [d), subsequent items following high-reward items
were associated with lower memory performance compared
with those following low-reward items (V = 1854, P < 0.01;
Figure [jg). These results align with model predictions (Fig-
ure e and fh), supporting our hypothesis that participants
adaptively allocate limited cognitive resources during mem-
ory encoding based on reward levels.

While rewards affect current and subsequent items (Fig-
ure[dd and[) in a manner comparable to Experiment IT (Fig-
ure Bp and ), there are differences in how rewards affect
preceding items between these two experiments. Experiment
II did not exhibit an effect of reward on preceding memory
performance; this is because resources cannot be reallocated
to a high-reward item at position k£ once they have already
been used to encode another item at position k — 1 (a key as-
sumption in the object-level model). However, the above re-
sult could be reversed if one decides not to allocate resources
at position k — 1 in the first place. A strong test for the opti-
mal model is to examine if participants reserve resources at
position k — 1 if they anticipate high-reward items in the up-
coming future. In the current experiment, participants were
informed of (so was the model) the reward structure of a
list prior to the list presentation. We analyzed how rewards
of the second halves influence memory performance of the
first halves (Figure [dj). Consistent with our model predic-
tions (Figure [k), items preceding high-reward items were
associated with lower memory performance compared with
those preceding low-reward items (V = 1842.5, P < 0.01;
Figure[d)). This is in contrast to those in Experiment IT where
there was no effect of reward on the preceding items (Fig-
ure [3h). These results provide strong evidence that the meta-
level process adaptively reserves and allocates cognitive re-
sources to encode items given the resource constraints at the
object-level.

Conclusion

In this work, we presented an optimal model of metacognitive
control for memory encoding to understand the role of reward
in memory. The model is constrained by limited cognitive
resources available at encoding, where resource depletion in-
creases memory strength but requires time for recovery. We
validated our model across three experiments, which explain
why high-reward items do not always show memory advan-
tages, how they can affect the memory of subsequent but not
preceding items, and how reward anticipation can reverse the
insensitivity of the preceding items to rewards. Together, our
results provide strong evidence that reward-modulated mem-
ory encoding is an adaptive process involving meta-level con-
trol, rather than a passive response to individual reward val-
ues.
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