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Abstract
How people represent categories and how those representations change over time is a basic question about human cognition.
Previous research has demonstrated that people categorize objects by comparing them to category prototypes in early stages
of learning but consider the individual exemplars within each category in later stages. However, these results do not seem
consistent with findings in the memory literature showing that it becomes increasingly easier to access representations of
general knowledge than representations of specific items over time. Why would one rely more on exemplar-based represen-
tations in later stages of categorization when it is more difficult to access these exemplars in memory? To reconcile these
incongruities, our study proposed that previous findings on categorization are a result of human participants adapting to a
specific experimental environment, in which the probability of encountering an object stays uniform over time. In a more
realistic environment, however, one would be less likely to encounter the same object if a long time has passed. Confirming our
hypothesis, we demonstrated that under environmental statistics identical to typical categorization experiments the advantage
of exemplar-based categorization over prototype-based categorization increases over time, replicating previous research in
categorization. In contrast, under realistic environmental statistics simulated by our experiments the advantage of exemplar-
based categorization over prototype-based categorization decreases over time. A second set of experiments replicated our
results, while additionally demonstrating that human categorization is sensitive to the category structure presented to the
participants. These results provide converging evidence that human categorization adapts appropriately to environmental
statistics.
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Computationalmodels of categorization have played a key
role in understanding the representations people use when
learning categories. Two prominent models of categoriza-
tion are the prototype model, which posits that a stimulus
is categorized by comparing it to the prototype of each cate-
gory (Posner andKeele,1968; Posner andKeele, 1970; Reed,
1972; Mervis and Rosch, 1981; Homa, Sterling, & Trepel,
1981), and the exemplar model, which asserts that a stimulus
is categorized by comparing it with all of the objects for each
category (Medin & Schaffer, 1978; Nosofsky, 1986). Earlier
findings strongly favored the exemplar model (McKinley &
Nosofsky, 1996; Medin & Schaffer, 1978; Shin & Nosof-
sky, 1992), but these studies focused on the final stage of
learning and did not consider the progression of category
learning over time. Smith and Minda (1998) studied the fits
of the prototype and exemplar models of categorization to
human performance on a word categorization task over the
course of an experiment and found that although the exemplar
model dominates in the end, the prototypemodel has a strong
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advantage in early stages of learning. This result is consistent
with the proposal that individuals categorize using a simple
rule-based approach in early stages of category learning and
more exemplar-specific strategies in later stages (Nosofsky,
Palmeri, & McKinley, 1994a).

While prototype- and exemplar-based categorization have
been extensively studied in the literature, less attention has
been paid to the constraints of memory on categorization.
How much one is able to use prototype-based or exemplar-
based categorization is constrained by how accessible these
representations are in memory. Prototype-based categoriza-
tion requires retrieving generalized knowledge or summary
statistics about the category,whereas exemplar-based catego-
rization requires retrieving memory about specific instances.
Categorizing using generalized knowledge in early stages
and switching to an exemplar-based model in later stages,
as documented by Smith and Minda (1998), does not seem
consistent with findings in the memory literature showing
that it becomes increasingly easier to access representations
of general knowledge than representations of specific items
over time – i.e., memory of specific items decays much faster
than memory of the gist, or general knowledge (Posner and
Keele, 1970; Zeng, Tompary, Schapiro, & Thompson-Schill,
2021). Why would one rely more on exemplar-based repre-
sentations in late stages of categorization when it is more
difficult to access these exemplars in memory?

Memory of specific items decays quickly for a reason.
From a rational perspective, there is no need to retain infor-
mation in memory if it is no longer needed, as determined
by the statistics of the environment (Anderson & Schooler,
1991). Therefore, memory decay obeys a power-law func-
tion, defined as

f (x) = axk, (1)

where k < 0 and x represents the amount of time that has
passed, because the relationship between stimulus recency
and the need odds, the odds that the stimulus will be required
in the future, often obeys the power law in realistic environ-
ments, as determined from environmental sources such as
The New York Times, parental speech, and electronic mail
(Anderson and Schooler, 1991; Fig. 1A). In other words, we
remember what happened five minutes ago better than what
happened five days ago because what happened five min-
utes ago is more likely to be relevant to the current moment
than what happened five days ago. In contrast, categoriza-
tion experiments, including Smith andMinda (1998), usually
use stimuli that appear with the same frequency regardless
of the last time the stimulus was seen (Fig. 1B). This creates
unrealistic environmental statisticswherewhat happenedfive
minutes ago is equally likely to be relevant to the current
moment compared with what happened five days ago. To

adapt to this new environment, human participants would
over-represent stimuli in their memory that were last seen a
long time ago.

To systematically examine the effect of environmental
statistics on categorization behavior, we create an experi-
mental condition in Experiment 1 that better reflects the
power-law relationship between stimulus recency and the
need odds as seen from environmental statistics encoun-
tered in the real world (Fig. 1C, D). We also create a control
condition in which stimuli are presented with uniform fre-
quency over time regardless of the last time a stimulus was
seen, identical to Fig. 1B, following closely the setup in
Smith and Minda (1998). We hypothesize that setting up
the categorization experiment with realistic environmental
statistics in the experimental condition will reduce the acces-
sibility of exemplar-based representations in memory over
time (assuming that human memory rationally adapts to
the environment), therefore reducing or inverting the trend
previously observed in favoring prototype-based represen-
tations early on and exemplar-based representations at late
stages.

The goal of the current work is to demonstrate how human
categorization behavior is a result of rationally adapting to
the structure of the environment – different trajectories of
prototype-based versus exemplar-based representations will
emerge under different environmental statistics. Our efforts
in providing a rational account of categorization regard-
ing the environmental structure are in the same spirit as
previous work that provides a rational account of cate-
gorization regarding the category structure, showing that
when a learner should choose to use prototype-based or
exemplar-based representations is determined by the cate-
gory structure presented to the learner (Griffiths, Canini,
Sanborn, & Navarro, 2007; Briscoe and Feldman, 2011).
Prototype-based or exemplar-based representations corre-
spond to different strategies of categorization, both being
specific cases of a unifying model that is capable of opti-
mally representing a given category structure (Griffiths et al.,
2007). Similarly, it has been suggested that the literature
that favors exemplar-based representations typically involves
experiments that use poorly differentiated category struc-
tures (Medin, Dewey, &Murphy, 1983; Medin and Schaffer,
1978; Medin and Schwanenflugel, 1981; Medin and Smith,
1981; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994b; Nosofsky, Palmeri, and McKinley, 1994c); those cat-
egory structures canweaken the urge to formprototype-based
clusters of exemplars (Smith & Minda, 1998). Given the
important role of category structure during categorization,
in Experiment 2, we explore whether the results obtained
in Experiment 1 can be generalized to different category
structures by changing the number of category exceptions.
We expect that when there are more category exceptions
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Fig. 1 The environmental recency function, displaying the relationship
between stimulus recency and its need odds, calculated as P(stim)/(1−
P(stim)) where P(stim) is the probability of seeing the stimulus. A
Based on words appearing in The New York Times headlines (1986 and
1987), reproduced from Fig. 4a in Schooler & Anderson (1991). B Cal-
culated based on the experimental design of Smith and Minda (1998)

and computed once every 14 trials using a 14-trial window. C, D Aver-
age data from the 60 sequences of stimuli generated for the experimental
condition in Experiment 1. In C and D, P(stim) was calculated using a
window size of 15 trials. The linear log-log relationship in D indicates
that C is a power-law function, as taking the log of both sides of Eq. 1
gives the linear function log ( f (x)) = k log (ax)

(non-linearly separable category structure), it is rational
for participants to rely more on exemplar-based represen-
tations to encode these exceptions; whereas when there are
no category exceptions (linearly separable category struc-
ture), prototype-based representations and exemplar-based
representations are equally useful in supporting categoriza-
tion performance. Of particular interest is how participants’
categorization strategies over different stages of learning, as
examined in Experiment 1, interact with different category
structures.

The plan of the paper is as follows. We first explain
the formulations of the prototype and exemplar models of
categorization. Next, we delineate how we constructed the
presentation of stimuli in the experimental condition in order
to reflect the environmental statistics of the real world.
Finally, we discuss the behavioral and model results from
both our replication of Smith and Minda (1998) in the con-
trol condition and our manipulations of the environmental
statistics in the experimental condition. Lastly, we conduct
a second set of experiments to examine how our findings
regarding the effect of the environmental statistics gener-
alize to different category structures. These results provide
converging evidence that human categorization adapts appro-
priately to environmental statistics.

Background

Prototypemodel

Various versions of the prototype model exist (Medin &
Schaffer, 1978; Reed, 1972); we use here the formulation
specified by Smith and Minda (1998, 2011). The prototype
model compares the observed stimulus to the prototype for
each category. First, the distance di,Pk between stimulus i
and the prototype for category k ∈ {1, 2}, Pk , is computed as

di,Pk =
m∑

j=1

w j |i j − Pk, j |, (2)

where i j is the stimulus’ value for dimension j , and Pk, j is
the value of the prototype of category k for dimension j , and
w j is the attentional weight assigned to dimension j . Each
attentional weight w j is constrained to take on a value in
[0, 1], and the weights together sum to 1 (

∑m
j=1 w j = 1).

Once the raw distance di,Pk has been calculated, stimulus
i’s similarity, ηi,Pk , to the category k prototype Pk is com-
puted as

ηi,Pk = e−c di,Pk , (3)
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where c is a sensitivity parameter constrained to [0, 20]. The
sensitivity parameter has the effect of amplifying or shrink-
ing psychological space (Smith &Minda, 1998). Finally, the
probability that stimulus i (Si ) will be categorized into cate-
gory 1 (R1) is given by

P(R1|Si ) = ηi,P1

ηi,P1 + ηi,P2
. (4)

Exemplar model

The exemplar model has been developed and generalized
from the original context model (Medin, 1975; Nosofsky,
1984, 1986, 1987, 1988a; Palmeri & Nosofsky, 1995a;
McKinley & Nosofsky, 1995a). This formulation of the
exemplar model was used and thoroughly described in
Smith and Minda (1998). The exemplar model compares the
observed stimulus to all of the previously seen exemplars in
each category in order to generate a category prediction for
the observed stimulus. The distance di,x and similarity mea-
sure ηi,x between stimulus i and exemplar x are calculated
identically as in the prototype model. However, the exemplar
model considers all exemplars in order to generate a predic-
tion, so the probability that stimulus i (Si ) will be categorized
into category 1 (R1) is

P(R1|Si ) =
∑

x∈C1
ηi,x∑

x∈C1
ηi,x + ∑

x∈C2
ηi,x

, (5)

where C1 is the set of exemplars for category 1 and C2 is the
set of exemplars for category 2.

Because our experiment used stimuli with six dimensions,
both models had a total of six free parameters: the six atten-
tional weights (w1, ..., w6) which together sum to 1 (hence,
five of which are free) and the sensitivity parameter (c).
The two models were then fit to participant data from the
control and experimental conditions of the experiment. In
addition to the versions of prototype and exemplar mod-
els described above, the major conclusions in the present
work are also verified against other variants of models
with a guessing-rate parameter (Smith & Minda, 1998), a
response-scaling parameter (Nosofsky & Zaki, 2002), and
exemplarmemory-strength parameters (Donkin&Nosofsky,
2012). More details on these model variants can be found in
Appendix A.

Experiment 1

Experiment 1 explores the possibility that participants’ cate-
gorization strategies over different stages of learning depend
on the environmental statistics. To this end, participants’ per-
formance is modeled using the versions of the prototype

and exemplar models discussed earlier. In the control condi-
tion, set up similarly to Experiment 2 of Smith and Minda
(1998), we expect to replicate the previous results in which
the prototype-based model would fit human data better early
on and the exemplar-basedmodelwould fit human data better
later in learning; in the experimental condition with realistic
environmental statistics, we predict that the trend observed
in the control condition would be reduced or inverted.

Methods

Procedure

The task required participants to repeatedly categorize 14
stimuli into two categories. The stimuli were six-letter non-
sensical words taken from Appendix A of Smith and Minda
(1998). Each stimulus can be thought of as a six digit string
of bits, such that the prototype for category 1 was 000000
and the prototype for category 2 was 111111. Seven stim-
uli belonged to category 1 [000000, 100000, 010000,
001000, 000010, 000001, 111101], and the other
seven stimuli belonged to category 2 [111111, 011111,
101111, 110111, 111011, 111110, 000100]. Each
digit and position in the binary string corresponds to a unique
letter; for example, the actual stimulus corresponding to
000000 that participants see is gafuzi, and the stimu-
lus corresponding to 010000 is gyfuzi. In each trial, the
participant was shown one of the 14 stimuli and had unlim-
ited time to select a response of 1 for category 1 and 2 for
category 2. For exactly 1 s after each trial, the participant was
shown Correct or Incorrect accordingly.

Control condition The control condition, similar to Smith
and Minda’s (1998) experiment (the only difference being
616 trials in our experiment vs. 560 trials in the original
experiment), consisted of 616 trials divided into 44 blocks,
each consisting of 14 trials. Each block consisted of a random
permutation of the 14 stimuli such that each stimulus was
shown exactly once per block.

Experimental conditionTocreate the environmental statis-
tics in Fig. 1A, we developed an algorithm to generate a
sequence of stimuli for the experiment. The specific pattern
of stimulus presentation should, in turn, influence the need
odds and hence the participant’s retention of objects in mem-
ory. The experimental design first involved assigning each of
the 14 stimuli its own power-law function. We added several
new parameters to the power-law function to generate the
necessary experimental conditions:

f (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 t < t0
s t = t0
a( t−t0

r )k − θ t0 < t ≤ t0 + n

0 t > t0 + n

(6)
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where t is the trial number, t0 is the start trial for the stimulus
to be introduced (i.e., an integer multiple of 35, since a new
stimulus is introduced every 35 trials), r is the range, n is the
number of trials the object’s power-law function should be
sampled from, s is the starting value for the power-law func-
tion, and θ is a calibration parameter. Power-law functions for
consecutive stimuli were introduced in intervals of 35 trials.
As in the control condition, each participant participated in a
total of 616 trials. Figure 2A displays the resulting power-law
functions for each stimulus over the entirety of the experi-
ment. The assignment of stimuli to power-law functions was
randomized for each participant: there was no balancing of
exemplars from the two categories or any special treatment
for the category exceptions. A different randomization was
provided for each participant in order to ensure that the order-
ing of stimuli, such as whether the exceptions occurred early
versus late, would not confound our results.

To assign a stimulus to each trial based on the continuous
power-law functions, we first binned trials into discrete bins
of 35 trials. (Since 616 trials is not divisible by 35, the final
bin only contained data from 21 trials, though by this point
all stimuli have already been introduced for a while.)We then
generated a probability distribution for the bin based on the
relative values of the various stimulus power-law functions
over the trials in the bin, and generated the stimuli for trials in
the bin by sampling from this distribution. Figure 2B shows
how the resulting sequences of stimuli adequately reflected
the original power-law functions. Figure 2C shows an exam-
ple stimulus sequence for a single participant. Finally, we
plotted how the need odds vary as a function of stimulus

recency given the sequences of stimuli generated by this
method (Fig. 1C, D), and verified that they closely reflect
the environmental statistics in the real world such as those
derived from headlines of The New York Times (Fig. 1A).
Anderson and Schooler (1991) analyzed the statistics of real
world environments such as The New York Times headlines,
parental speech, and electronic mail, and found that the prob-
ability of encountering the same word again decreases over
time. Following these patterns, the presentation structure in
the experimental condition has the property that the spacing
between presentations of an item tends to expand. The pre-
sentation structure has an additional feature – there are fewer
items to sample from early on than later, similarly to how in a
list-learning paradigm there are fewer items to rehearse from
early on than later. While the first feature is necessary, it is
possible that there exist other presentation structures without
the second feature that can produce the environmental statis-
tics analyzed by Anderson and Schooler (1991). Our goal
here is to create an experimental setup (without exhausting
all possible setups) that closely reflects the environmental
statistics in the real world, as derived from The New York
Times headlines, parental speech, and electronic mail.

Participants

We collected data from 60 participants for each condition
(Control, Experimental). For reference, Smith and Minda
(1998) had 32 participants for each experiment. Participants
were recruited from the 18–23 age range and English-
speaking population using Prolific.

Fig. 2 The stimulus sequences shown to participants were generated
algorithmically from power-law functions. A Each curve corresponds
to the power-law function for a particular stimulus. B Since data is
aggregated, each curve corresponds to the i-th stimulus seen across all
participants. For example, the first curve illustrates the average propor-
tion of each bin allocated to the first stimulus (regardless of its identity)

shown to the 60 participants. C Each color corresponds to a unique
stimulus i ∈ {1, 14}, and the figure highlights the significant tempo-
ral clustering and subsequent decay caused by our stimulus generation
algorithm based on power-law functions. Parameter values of a = 1,
k = −0.3, r = 1000, n = 350, s = 10, and θ = a ∗ ( nr )k were chosen
to adequately match the power-law function in Fig. 1A
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Model fitting

Trials were split and grouped into 11 trial segments. For
the control condition, following the procedure in Smith and
Minda (1998), the first trial segment corresponds to trials
at the beginning of the experiment, and the last trial seg-
ment corresponds to trials towards the end of the experiment.
For the experimental condition, the first trial segment corre-
sponds to the earliest stage when a stimulus has just been
introduced (i.e., at the beginning of each power-law function
in Fig. 2A), and the last trial segment corresponds to the lat-
est stage when a stimulus has been introduced for a long time
(i.e., towards the end of each power-law function in Fig. 2A).
Note that we can also interpret the early and late trial seg-
ments in the control condition as coming from the earliest or
the latest stage after a stimulus has been introduced. There
are 56 trials exactly for each trial segment in the control
condition, and 56 trials on average for each trial segment in
the experimental condition due to the probabilistic sampling
process.

Figure 3 provides a visualization of the trial structure:
in earlier trial segments (Trial Segment 1) at the beginning
of the power-law functions, each stimulus is presented very
frequently with a very short duration between consecutive
presentations, whereas in later trial segments (Trial Segment
11) towards the end of the power-law functions, each stim-
ulus is presented less frequently with a larger gap between
consecutive presentations.

To compare the control condition of our results with Smith
and Minda’s (1998), we followed the same model fitting
methods as Smith and Minda (1998) to minimize the sum
of squared errors (SSE) between the observed and predicted
probabilities:

SSE =
14∑

i=1

(P(R1|Si ) − p̂1,Si )
2 (7)

where P(R1|Si ) is themodel-generated probability that stim-
ulus i belongs to category 1 based on an entire trial segment
(56 trials) of data, and p̂1,Si is the proportion of trials in
the trial segment (out of those in which stimulus i was
seen) in which the participant actually categorized stimu-
lus i in category 1. We ran Scipy’s Sequential Least Squares
Programming (SLSQP) method with ten initial random con-
figurations to obtain the best-fit parameters. The model was
fit for each participant receiving the control condition over
each trial segment, as in Smith andMinda (1998). The result-
ing best-fit parameters were used to calculate the SSE that
was ultimately used as the measure of fit in Fig. 5.

For the experimental condition, trial segments (as shown
in Fig. 3) are not chronological groupings of trials in abso-
lute time. This means that it is possible that two trials that are
adjacent in time in the experimental condition come from two
very different trial segments like 2 and 9, and it seems unre-
alistic to assume that one’s attentional weights would alter so
quickly from one trial to the next. Therefore, the model in the
experimental condition was fit for each participant over the
entire experiment, instead of over each trial segment like that
done in the control condition. Additionally, because the num-
ber of trials per trial segment is not fixed in the experimental
condition (due to the probabilistic sampling procedure for
constructing the trial structure as shown in Fig. 2), we used
the mean-squared error (MSE) over all trials in the trial seg-
ment, with residuals computed on a trial-by-trial basis rather
than summed over an entire trial segment like that done in
the control condition:

MSE = 1

56

56∑

j=1

(P(R1|T [ j]) − p̂1,T [ j])2 (8)

where j is the trial number, T [ j] corresponds to the stimulus
Si that was seen on trial j of the trial segment, and p̂1,T [ j] is

Fig. 3 An example of the sets of trials that constitute trial segments A 1, B 6, and C 11 in the experimental condition

123



Psychonomic Bulletin & Review

either 0 or 1 depending on the participant’s observed predic-
tion on trial j .

We ensured that the exemplar model only considered
exemplars seen thus far since not all exemplars were seen
from the beginning in the experimental condition. That is,
referencing Eq. 5 (which delineates the exemplar model),
the summation of similarities between the stimulus and every
exemplar in each category only incorporates those exemplars
that the participant has already encountered (since during
the experimental condition, some exemplars may only be
seen for the first time very late in the experiment). Specif-
ically, this means that for the exemplar model on a given
trial, the C1 and C2 terms are not necessarily the entire set of
exemplars for that category but instead, the set of exemplars
already encountered for that category. To make sure that dif-
ferences between model results in the control condition and
the experimental condition do not entirely come from differ-
ent model-fitting choices, we carried out additional model
analyses when both models are fit to the entire experiment
(Appendix A) and when both models are fit to consecutive
sequences of 56 trials, as in the original control condition
(Appendix B), which did not change our conclusions.

Results

Behavioral results

The categorization accuracies per trial segment in each con-
dition were averaged over all participants and graphed over
time, resulting in Fig. 4. In the control condition, significant
learningoccurred between thefirst (M = .62, SD = .11) and
last (M = .73, SD = .18) trial segment as per the Wilcoxon
signed-rank test, z = 276.5, p < .001. In the experimen-
tal condition, under realistic environment statistics where a
stimulus is presented less and less frequently over trial seg-
ments, categorization accuracy decreases from the second
(M = .92, SD = .08) to last (M = .81, SD = .15) trial
segment as per the Wilcoxon signed-rank test, z = 47.0,

p < .001. The second trial segment was compared in the
experimental condition because this was the point that best
reflected the beginning of the power-law function – when
the participant had repeatedly seen the stimulus and was past
the very initial stage of learning. In the control condition,
where the probability of encountering a stimulus stays uni-
form over time, categorization accuracy increases as there is
an opportunity to overlearn the material. In the experimen-
tal condition with realistic environmental statistics, accuracy
decreases because from a rational perspective, it is not neces-
sary tomaintain strongmemory representations of exemplars
when the chance of needing them is low. One might wonder
if this decrease in accuracy in the experimental condition is
instead attributed to the number of stimuli introduced (since
later trial segments tend to contain a greater diversity of
stimuli on average than earlier ones). We ran an additional
analysis that only considered trials in the experimental con-
dition after all stimuli had been introduced and found that
the decrease in accuracy between the second and last trial
segment in the experimental condition is still statistically sig-
nificant (z = 380, p < .001).

Model results

The model results over trial segments of the control condi-
tion in Fig. 5B are compared with the results from Smith and
Minda (1998) in Fig. 5A. We qualitatively replicate the key
results from Smith and Minda (1998), where the advantage
of the exemplar model over the prototypemodel is increasing
over time. Themodel results over trial segments of the exper-
imental condition (Fig. 5C) are compared with the results
from the control condition, when also fit over the entire
experiment and using MSE for fit. In contrast to the control
condition, under environmental statistics that reflect real-
world environments, the advantage of the exemplar model
over the prototype model is decreasing over trial segments in
the experimental condition. To test the interaction of model
type and trial segment as within-subject variables on model

Fig. 4 Average categorization accuracy over trial segments for A the control condition and B the experimental condition. Error bars denote the
standard error of the mean
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Fig. 5 Comparison of model fits of prototype-based versus exemplar-
based categorization for A the original experiment, reproduced from
Smith and Minda (1998), B the control condition, and C the exper-
imental condition after introducing realistic environmental statistics.

Models were fit for each participant’s performance over a trial segment
(A, B) or over the entire experiment (C) and then averaged over all
participants for the condition. Error bars denote the standard error of
the mean

fit, we randomly permuted the model type and trial segment
variables within each subject and computed the resulting
interaction F test statistic. In this test, the p value is the
percentage of simulations for which the interaction F test
statistic exceeds the interaction F test statistic from the real
data. By running 1000 simulations, we report p < .001 in
the test for interaction betweenmodel type (prototype, exem-
plar) and trial segment (first/second, last) in both the control
and experimental conditions of Experiment 1. We conducted
additional model simulations in Appendix E, using either the
prototype or exemplar model as the ground truth, and plotted
corresponding model fits similar to Fig. 5. While the relative
fits of our model consistently reflect the ground-truth model,
we observed that the change in fits of the exemplar-based
model (but not the prototype-based model) is influenced by
the number of stimuli encountered thus far. This effect could
contribute to the trend depicted in Fig. 5. Therefore, we fur-
ther analyzed periods of the experiment when the number of
stimuli that have been seen is fixed, and demonstrated that
the trend persists (see details in Appendix E). More details of
the distribution of responses over stimuli with what the pro-
totype model and the exemplar model predict can be found
in Appendix D.

Experiment 2

In addition to environmental statistics, Experiment 2 also
assessed the effect of category structure on the fits of the
prototype and exemplar models by altering the number of
category exceptions (i.e., 0, 2, 4). Since the prototype model
is equivalent to assuming a linear boundary between cate-
gories (Ashby & Maddox, 1993), we expect that when there
are more category exceptions it is rational for participants to
rely more on exemplar-based representations to encode these
exceptions; whereas when there are no category exceptions

participants would rely similarly on both prototype-based
or exemplar-based representations. Of particular interest is
how participants’ category strategies over different stages
of learning depends jointly on the category structure and
environmental statistics. Since Experiment 1 was conducted
using a category structure with two exceptions, we addition-
ally expect to replicate the results in Experiment 1 in the
conditions with two exceptions in Experiment 2.

Methods

Procedure

Experiment 2 has a total of six conditions. We examine cat-
egory structures with 0 exceptions, two exceptions (as in
Experiment 1), and four exceptions, with a control and exper-
imental condition for each level of exceptions. The sequences
of stimuli for each of the experimental and control condi-
tions were generated identically as in Experiment 1, using
the same binning and sampling method with the piece-wise
power law function in Eq. 6 for the experimental condition
and repeated blocks of random permutations of the 14 stim-
uli for the control condition; in comparison to Experiment 1,
only the actual stimuli changed, depending on the number
of exceptions. Stimuli were still six-letter nonsensical words
modeled by six-bit binary strings, with the category proto-
types of 000000 for category 1 and 111111 for category
2. For the conditions with 0 exceptions, the seven stimuli
in category 1 were 000000, 100000, 010000, 001000,
000010, 000001, and 000100, and the seven stimuli in
category 2 were 111111, 011111, 101111, 110111,
111011, 111110, and 111101. For the conditions with
two exceptions, the category structure was identical to that
described in Experiment 1: 000000, 100000, 010000,
001000, 000010, 000001, and 111101 for category
1 and 111111, 011111, 101111, 110111, 111011,
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111110, 000100 for category 2. For the conditions with
four exceptions, the seven stimuli in category 1 were
000000,100000,010000,000010,000001,111101,
and 101111, and the seven stimuli in category 2 were
111111,011111,110111,111011,111110,000100,
and 001000. Each digit and position in the binary string cor-
responds to a unique letter; for example, the actual stimulus
corresponding to 000000 that participants see is gafuzi,
and the stimulus corresponding to 010000 is gyfuzi.

Participants

This experiment was run on Prolific with 60 participants
for each of the six conditions. Exactly as in Experiment 1,
participants were recruited from the 18–23 age range and
English-speaking population.

Model fitting

The model-fitting procedure for both control and experimen-
tal conditions was identical to that in Experiment 1.

Results

Behavioral results

We replicated key behavioral results from Experiment 1: as
shown in Fig. 6, in control conditions, participants improve
their categorization accuracy over trial segments, whereas in
experimental conditions, participants’ categorization accu-
racy decreases over trial segments. Additionally, we exam-
ined the effect of exceptions on categorization accuracy. As
the number of exceptions increases, categorization accuracy
declines for both the control and experimental conditions.
To formally test these effects, we used the participants’ cat-
egorization accuracies with trial segment (first/second, last)
as a within-subject variable and number of category excep-

tions (0, 2, 4) as a between-subjects variable for both the
control and experimental conditions and conducted a per-
mutation test with 1000 simulations, for which we computed
the F test statistic for each independent variable. For both the
control and experimental conditions, there were significant
effects on categorization accuracy by both the number of
exceptions, p < .001, and the trial segment, p < .001.

Model results

There are two goals for the modeling analyses. The first goal
is to examine the effect of category structure (i.e., number of
exceptions) on the fits of the prototype and exemplar models.
Figure 7 shows that as the number of exceptions increases, the
exemplar model’s advantage over the prototype model also
increases. We analyzed the effects of model type (prototype,
exemplar), a within-subject variable, and number of excep-
tions (0, 2, 4), a between-subjects variable, on the model
fits in the middle (fifth) trial segment by running 1000 sim-
ulations with random permutations of the model type and
number of exceptions variables and computing the resulting
interaction F-test statistic. Using an identical definition of
p value as for the permutation tests in Experiment 1, the
interaction between model type and number of exceptions
was significant for both the control conditions, p = .022,
and experimental conditions, p < .001.

The second goal of the modeling analyses is to exam-
ine whether the results obtained in Experiment 1 can
be generalized to different category structures (linearly-
separable: 0 exceptions; non-linearly separable: two excep-
tions, four exceptions). Consistent with the observations
in Experiment 1, for conditions with two or four excep-
tions, the exemplar model’s advantage over the prototype
model decreases over time in the experimental condition
but increases over time in the control condition, as shown
in Fig. 7. However, for conditions without any exceptions,
the model fits for both the prototype and exemplar models

Fig. 6 Average categorization accuracy over trial segments for all three control conditions and all three experimental conditions, by number of
exceptions. Error bars denote the standard error of the mean
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Fig. 7 Comparison of model fits of prototype-based versus exemplar-
based categorization for all six conditions, each defined by (1) control
or experimental version of the experiment and (2) the number of excep-
tions in the category structure. Models were fit for each participant’s

performance over a trial segment (A–C) or over the entire experiment
(D–F) and then averaged over all participants for the condition. Error
bars denote the standard error of the mean

exhibit nearly identical trends over time and do not demon-
strate the effects previously observed in Experiment 1. This
could be attributed to the similar predictions made by the
exemplar-based model and the prototype-based model under
this category structure. To formally test these effects, we ran
a non-parametric permutation test using the F interaction
test statistic to analyze the effects of model type (prototype,
exemplar) and trial segment (first/second, last) on the model
fits – identical to the test in Experiment 1. For the cases with
zero exceptions, we obtain p = .005 for the experimental
condition and p = .048 for the control condition; for the
cases with two exceptions and four exceptions, we obtain
p < .001 for both the control and experimental conditions.

We have shown that the overall accuracy is higher when
there are fewer exceptions. This is because when there are no
exceptions, prototype-based representations and exemplar-
based representations are equally useful in supporting cate-
gorization performance.When there are category exceptions,
accuracy critically depends on the ability to form exemplar-
based representations, as exemplar-based representations are
capable of encoding both exceptions and non-exceptions
whereas prototype-based representations provide summary
statistics representative of only non-exceptions. Similarly,
the increasing accuracy over trial segments in the control
condition in Fig. 6 can be explained by the improved fits of
exemplar-based representations relative to prototype-based

representations (control conditions in Fig. 7), when there
is opportunity to over-learn the stimuli. The decreasing
accuracy over trial segments in the experimental condi-
tion in Fig. 6 can be explained by the decreased fits of
exemplar-based representations relative to prototype-based
representations (experimental conditions in Fig. 7), when
stimuli are presented less and less frequently.

General discussion

While prototype-based and exemplar-based categorization
have been extensively studied in the literature, less attention
has been paid to the constraints of memory on categoriza-
tion under different environmental statistics. In our results,
we demonstrate that human categorization rationally adapts
to the environmental statistics. In our experiments, average
categorization accuracy generally improved over time in the
control condition; this pattern is expected, as participants
were shown stimuli with equal frequency throughout the
experiment and thus could learn frommore information over
time. In the experimental condition, however, categorization
accuracy steadily declined after the second trial segment.
Therefore, our experimental design was successful at intro-
ducing memory constraints that inhibited performance over
time. InExperiment 1, our findings from the control condition
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qualitatively replicated Smith and Minda’s (1998) findings
that when stimuli are presented with uniform frequency over
time, there is an opportunity to over-learn the stimuli, which
leads to an increased advantage of the exemplar model over
the prototype model over time. The results from the exper-
imental condition confirm our hypothesis: when stimulus
presentation more accurately reflects realistic environmental
statistics, there is reduced need to retrieve the same exem-
plars as time goes by, leading to a decreased advantage of
the exemplar model over the prototype model. Experiment 2
replicated our results, while additionally demonstrating that
human categorization is sensitive to the category structure
presented to participants: the trend observed in adapting
to different environmental statistics only extends to cate-
gory structures with exceptions present. We now turn to the
broader implications of these results.

It has been pointed out that memory and categorization
rest on similar representations, but differ in whether identifi-
cation is made at the instance/individual level or the category
level (Anderson, 1991). By adjusting the level of identi-
fication, rational models of categorization can be used to
explain results of fan effects in a memory task (Anderson,
1991). Exemplar-based models can account for connections
between categorization and other fundamental cognitive pro-
cesses such as in old-new recognition memory tasks (Estes,
1994; Hintzman, 1988; Nosofsky, 1988b, 1991; Nosofsky
Zaki, 2003), as well as in short-term memory paradigms
(Nosofsky, Little, Donkin, & Fific, 2011). Other studies in
the literature have drawn parallels between category learn-
ing and memory studies. Following standard categorization
experiments where participants made judgment at the cate-
gory level, participants completed an additional recognition
test that allows for probing the representations at the instance
level. These studies identified a number of parallels between
category learning and memory studies on the effects of
schemas (Palmeri & Nosofsky, 1995a; Palmeri & Nosofsky,
1995b; Rojahn& Pettigrew, 1992; Sakamoto & Love, 2004).

The current paper is another step towards linking the two
pillars of cognitive psychology: memory and categorization.
Our findings demonstrate that what can account for rational
memory behavior can also be used to explain categorization
behavior. Since categorization requires not only retriev-
ing category representations – which characterizes memory
behavior – but also requires a step to use these representations
to make an identification on the category, it is expected that
what influences retrieval may also have downstream effects
on the categorization behavior. Our results are consistent
with the rational analysis of memory by Anderson (1990)
in deciding whether one should retrieve a particular memory
representation. A rationally designed information-retrieval
system would retrieve memory structures ordered by their
need probability p, and stop retrievingwhen pG < C , where
G is the reward associated with retrieving a target memory

and C is the cost in considering the memory. Under realistic
environmental sources where p decreases as time goes by
(Anderson and Schooler, 1991; Fig. 1A), this retrieval strat-
egy predicts that information that has occurred more recently
is more likely to be retrieved by the memory system (Ander-
son, 1990). Similarly, in our categorization experiments,
under realistic environmental statistics where p decreases as
time goes by (i.e., experimental condition), stimuli that have
occurred further in the past are less likely to show up again
and therefore less likely to be retrieved during categorization,
leading to decreased access to exemplar-based representa-
tions over time. This contrasts with environmental statistics
typically used in the categorization literature (i.e., control
condition), where p stays constant as time goes by. The lat-
ter case provides an opportunity for over-learning individual
stimuli, leading to increased access to exemplar-based repre-
sentations over time regardless of when the stimuli were last
seen. To summarize, our results from the control and experi-
mental conditions in Experiments 1 and 2 are consistent with
predictions from a rational-retrieval strategy when p is deter-
mined by the environmental statistics. Closely related to our
hypothesis is a version of the exemplar model that directly
imposes a power-law forgetting function; in this version,
recent exemplars are more strongly weighted than remote
ones during exemplar-based categorization (Elliott &Ander-
son, 1995; McKinley &Nosofsky, 1995b). Incorporating the
forgetting function is critical to capture behavior in short and
long-term recognition tasks and categorization experiments
with changing definition of categories (Donkin & Nosofsky,
2012; Elliott & Anderson, 1995). Although the forgetting
function alsomodels the accessibility of exemplars over time,
it does not embody the same assumption as in the present
work.While an exemplar-basedmodelwith a forgetting func-
tion captures the relative access to one exemplar versus other
exemplars, all exemplars can still be accessed,which is differ-
ent than examining how much categorization could depend
on a prototype-based representation instead as a result of
having less access to the exemplars. On the other hand, we
acknowledge that an exemplar-basedmodel with a forgetting
function is amore accurate exemplar-basedmodel, especially
in the experimental condition where the frequency of stimuli
changes over time. Therefore, we additionally tested and ver-
ified our hypotheses under this variant of the exemplar-based
model (see more details in Appendix A and B).

Furthermore, our results from Experiment 2 on the effect
of category structure are consistent with predictions from a
rational retrieval strategywhen the rewardG is determinedby
the category structure. Specifically, when there are no excep-
tions, prototype-based representations or exemplar-based
representations are equally useful in supporting categoriza-
tion performance, leading to the same G values. When there
are category exceptions present, there is larger G associ-
atedwith exemplar-based representations, as exemplar-based
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representations are capable of encoding both exceptions
andnon-exceptionswhereas prototype-based representations
provide summary statistics representative of only non-
exceptions. As a result, we observe that the advantage of
exemplar-based representations over prototype-based repre-
sentations increases as the number of exceptions increases,
and that when there are no exceptions, there is no change in
the difference of exemplar-based and prototype-based model
fits over different stages of category learning.

While the memory literature shows that it becomes
increasingly easier to access representations of abstract
knowledge than representations of specific items over time
(Posner & Keele, 1970; Zeng et al., 2021), categorization
has been shown to rely on abstract knowledge in early stages
and switch to an exemplar-basedmodel in later stages (Smith
& Minda, 1998). Our findings help to reconcile the incon-
gruities between these results by demonstrating that different
categorization behaviors arise as a result of rationally adapt-
ing to different environmental statistics. In both experiments,
human participants rationally adjust to the need probability,
relative cost, and reward associated with each object. Future
workwill exploremore complex environmental statistics and
cost-reward structures to better understand howmemory and
categorization work in tandem to enable efficient category
learning in the real world.

Appendix

A. Models containing additional parameters, fitted
for the entire experiment per participant

We explored additional versions of the prototype and exem-
plar models containing additional parameters as used in the
literature. In particular, we introduced (1) the guessing-rate
parameter, g, which measures the proportion of the time the
participant was randomly guessing as opposed to actively
using themodel, (2) the response-scalingparameter,γ ,which
describes the degree towhich the participant’s choice is deter-
ministic (Nosofsky & Zaki, 2002), and (3) each exemplar
x’s memory strength, mx, j = α j−β , where α, the scaling
parameter, can be assumed as 1, j is the lag (i.e., number
of trials since exemplar x was last seen), and β indicates
the rate of memory decay (Donkin & Nosofsky, 2012).
While the guessing-rate parameter applies to both models,
the response-scaling and exemplar memory-strength param-
eters only apply to exemplar model. After incorporating all
new parameters, we arrive at the probability that stimulus i
(Si ) will be categorized into category 1 (R1) by the prototype
model as

P(R1|Si ) = g

2
+ (1 − g) ∗ ηi,P1

ηi,P1 + ηi,P2
(9)

and by the exemplar model as

P(R1|Si )= g

2
+(1−g)∗ (

∑
x∈C1

mx, j ∗ ηi,x )
γ

(
∑

x∈C1
mx, j ∗ ηi,x )

γ +(
∑

x∈C2
mx, j ∗ ηi,x )

γ
.

(10)

We applied a similar approach for model-fitting and
fit-calculation as with the experimental conditions of Exper-
iments 1 and 2 and considered the effects of adding each new
parameter individually as well as their combined effects. For
model simplicity, we obtained the fixed value for thememory
strength parameter β = 1.4025 from Donkin and Nosofsky
(2012). We also tested that the specific choice of β value
does not affect our main conclusions by additionally testing
β = 0.3 and β = 5, as β values in previous studies fall in
the range of 0.3 to 5 (Nosofsky, Cao, Cox, & Shiffrin, 2014a;
Nosofsky, Cox, Cao, & Shiffrin, 2014b). We applied these
new model versions to both the control and experimental
conditions of Experiment 1 (i.e., two category exceptions).
The fits of these new models, as shown in Fig. 8, follow the
trends from the original models presented in this paper.

B. Models containing additional parameters, fitted
for consecutive sets of 56 trials per participant

Wealso explored amodel-fitting and fit-calculation approach
that served as an intermediate between Smith and Minda’s
(1998) original approach (model-fitting per participant and
per trial segment, plotted fit as the SSE over the trial seg-
ment) and our approach (model-fitting per participant over
the entire experiment, plotted fit as the MSE over the trial
segment after applying the model on a trial by trial basis).
In the intermediate approach for both the control and exper-
imental conditions, we fit the model for each participant’s
behavior for each consecutive set of 56 trials (i.e., how trial
segments are defined in the control condition), hence gen-
erating 11 different fittings per participant, and then apply
the model on a trial by trial basis for each trial segment and
compute the MSE as the measure of fit. With this approach,
one can still observe the trajectories of the two models over
trial segments as defined in the experimental condition (i.e.,
temporally non-contiguous sets of trials that correspond to
similar regions along each object’s power-law function), but
also take into consideration the potential for parameter val-
ues to change over the course of the experiment as Smith and
Minda (1998) do. This means that in the experimental con-
dition, for any given participant, the fitted parameters may
differ even within a trial segment, since different trials may
belong to different sets of 56 consecutive trials.

We applied the new models (as well as the intermedi-
ate models, derived by individually adding each of the new
parameters) described in the previous section with this fit-

123



Psychonomic Bulletin & Review

Fig. 8 Prototype and exemplar model fits with new parameters based on fitting the models per participant for the entire experiment

ting approach and obtained the results in Fig. 9. The patterns
observed with our original versions of the models still hold,
with the exemplar model gaining an advantage later in cate-
gory learning in the control condition and losing its advantage
in the experimental condition. In fact, after introducing the

response-scaling parameter, we observe the first cases in
which the prototype model actually outperforms the exem-
plar model in the final trial segments of the experimental
condition, as seen in Fig. 9F and J. With this new model-
fitting approach and using the same permutation test with

123



Psychonomic Bulletin & Review

Fig. 9 Prototype and exemplar model fits with new parameters based on fitting the models per participant for consecutive sets of 56 trials

1000 random simulations as in Experiment 1, the interaction
between model type and trial segment in the experimental
condition for the model including all the new parameters
(corresponding to Fig. 9J) was still statistically significant,
p = .007.

C. Accuracy per stimulus in the experimental
condition

We more closely analyzed the behavioral results for the
experimental condition by breaking down participants’ cate-
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Fig. 10 Categorization accuracy per stimulus for the experimental con-
dition of Experiment 1

gorization accuracy over trial segments by stimulus, as shown
in Fig. 10. Since the trial segment in the experimental condi-

tion captures the relative frequency of stimulus presentation,
Fig. 10 shows that (1) for every stimulus, regardless of its
status as an exception/non-exception, the participants’ cat-
egorization accuracy peaked early on (either in the second
or third trial segment) and then declined afterwards, and (2)
categorization accuracy for exceptions was generally lower
throughout the experiment and also tended to decline more
rapidly. These results are consistent with our hypothesis that
people rationally adapt to the environmental statistics of the
stimuli, and have worse representations of the stimuli when
they are needed less (i.e., presented less frequently).

D. Comparison of model predictions to participant
responses

While model fits and categorization accuracy are important
metrics in our analyses, we also provide a more thorough
account of the exact responses predicted by each model and
how they compare to participants’ responses in critical trial

Fig. 11 Responses predicted by the prototype and exemplar models compared to participants’ responses for critical trial segments
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Fig. 12 Model fits for the experimental condition of Experiment 1 with model-generated simulated data

segments. For both conditions of Experiment 1, we analyzed
responses for the second trial segment, when categorization
accuracy tends to peak in the experimental condition, and
the final trial segment, in order to capture the full range
of behavior in the experiment. In particular, we measured
the average proportion of trials that each of the models and
participants selected category 1 for each distinct stimulus
within each trial segment. We generated the model response
by sampling from a Bernoulli distribution seeded with the
fitted model’s predicted probability for category 1. We used
the model-fitting procedure in Appendix B, which fits the
models per set of consecutive 56 trials. The results in Fig. 11
show that both the prototype and exemplar models captured
the qualitative trends of the participants’ responses reason-
ably well, across all 14 stimuli, in early/late trial segments of
control/experimental conditions, though the prototypemodel
struggled in predicting responses for exceptions (Stimulus 7
and Stimulus 14). To further understand quantitatively how
well prototype models and exemplar models capture the par-
ticipants’ responses, we resort to the calculations of model
fits, as illustrated in Fig. 5.

E. Confirming the results using simulated data

To better interpret the model fits, we produce simulations
where the ground truth is known (i.e., either an exemplar
model or a prototype model) and fit our models to the sim-
ulated data. Thus, for the exact stimulus sequences used in
Experiment 1,we generated simulated response data by using
the prototype or exemplar model as the ground truth (with
each attentional weight set as 1

6 and the remaining param-
eters fixed at the median of their allowed range, and then
generating a Bernoulli sample for the trial from the model’s
predicted probability), fit the models to this data, and com-
puted and graphed the model fits, as shown in Fig. 12.

Overall, our model-fitting procedure is robust to the
ground-truth model, as we observed better fits (lower MSE)
in the exemplar model than the prototype model when an
exemplar model is the ground truth (Fig. 12A) and vice
versa (Fig. 12B). However, the change of the model fits over
trial segments only holds constant in the prototype model
but not in the exemplar model, likely being affected by the
total number of stimuli analyzed under a given trial segment

Fig. 13 Model fits for the experimental condition of Experiment 1 with model-generated simulated data, considering only trials after which all
exemplars have already been seen
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(later trial segments in the experimental condition contain a
larger number of stimuli on average than earlier segments, as
more of them have been encountered over time). To eliminate
the effect introduced by the number of exemplars previ-
ously encountered, we consider only trials in the simulated
data after which all stimuli have been encountered, which
generally would occur around or slightly after trial 455, cor-
responding to ∼ 25% of the total experiment length. By
analyzing this portion of the simulated data, model fits are

no longer affected by the number of stimuli analyzed, as they
all stay constant over trial segments under the ground truth
of either an exemplar model or a prototype model (Fig. 13A,
B).

Finally, we examine whether the main conclusion of our
analysis of the empirical data in the experimental condition
still holds after controlling for the number of exemplars. In
this analysis, we only consider the sequence of trials between
the introductions of every two consecutive stimuli so that the

Fig. 14 Model fits for the experimental condition of Experiment 2 with
four exceptions, where each subplot (B-F) only includes trials that have
the specified, fixed number of stimuli seen thus far, i.e., B only graphs

results from the sets of trials for each participant between the intro-
ductions of the fourth and fifth stimuli, and A averages these results,
including the results from 1–3 stimuli seen (not shown individually)
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number of exemplars is fixed and has no effect on the exem-
plar model’s predictions. A formal permutation test on the
averaged data from these analyses using the F interaction
statistic to test the effects ofmodel type (prototype/exemplar)
and trial segment (second, last) was significant, p < .001.
The results from this analysis in the experimental condition
with four exceptions are shown in Fig. 14, which indicates
that our previously observed results still hold after controlling
for the number of exemplars: the exemplar model’s advan-
tage over the prototype model decreases over time in the
experimental condition.

Open Practices Statement The data and analysis codes for all experi-
ments are available onGitHub (https://github.com/arjundevraj/rational-
categorization, https://github.com/arjundevraj/word_categorization).
This study was pre-registered (Experiment 1: https://aspredicted.org/
yq984.pdf; Experiment 2: https://aspredicted.org/9me7s.pdf).

References

Anderson, J. R.,&Schooler, L. J. (1991).Reflections of the environment
in memory. Psychological Science, 2, 396–408.

Anderson, J. R. (1990). The adaptive character of thought. Psychology
Press.

Anderson, J. R. (1991). The adaptive nature of human categorization.
Psychological Review, 98(3), 409–429.

Ashby, F. G., & Maddox, W. T. (1993). Relations between prototype,
exemplar, and decision bound models of categorization. Journal
of Mathematical Psychology, 37, 372–400.

Briscoe, E., & Feldman, J. (2011). Conceptual complexity and the
bias/variance tradeoff. Cognition, 118(1), 2–16.

Donkin, C., & Nosofsky, R. M. (2012). A power-law model of psy-
chological memory strength in short-and long-term recognition.
Psychological Science, 23(6), 625–634.

Elliott, S. W., & Anderson, J. R. (1995). Effect of memory decay on
predictions from changing categories. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 21(4), 815.

Estes, W. K. (1994). Classification and cognition. Oxford University
Press.

Griffiths, T., Canini, K., Sanborn, A., & Navarro, D. (2007). Unifying
rationalmodels of categorization via the hierarchical Dirichlet pro-
cess. In Proceedings of the 29th annual conference of the cognitive
science society (pp. 323–328).

Hintzman, D. L. (1988). Judgments of frequency and recognition mem-
ory in a multiple-trace memory model. Psychological review,
95(4), 528.

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of exemplar-
based generalization and the abstraction of categorical informa-
tion. Journal of Experimental Psychology: Human Learning and
Memory, 7(6), 418–439.

Logan, G. D. (1988). Toward an instance theory of automatization.
Psychological Review, 95(4), 492–527.

McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar
and decision boundmodels in large, ill-defined category structures.
Journal of Experimental Psychology: Human Perception and Per-
formance, 21, 128–148.

McKinley, S. C., & Nosofsky, R. M. (1996). Selective attention and the
formation of linear decision boundaries. Journal of Experimental
Psychology: Human Perception and Performance, 22, 294–317.

McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar
and decision boundmodels in large, ill-defined category structures.

Journal of Experimental Psychology: Human Perception and Per-
formance, 21(1), 128.

Medin, D. L. (1975). A theory of context in discrimination learning.
In G. H. Bower (Ed.), The psychology of learning and motivation.
Academic Press.

Medin, D. L., & Schaffer,M.M. (1978). Context theory of classification
learning. Psychological Review, 85, 207–238.

Medin, D. L., & Smith, E. E. (1981). Strategies and classification learn-
ing. Journal of Experimental Psychology: Human Learning and
Memory, 7, 241–253.

Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships
between item and category learning: Evidence that abstraction
is not automatic. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 9(4), 607–625.

Medin,D.L.,&Schwanenflugel, P. J. (1981). Linear separability in clas-
sification learning. Journal of Experimental Psychology: Human
Learning and Memory, 7(5), 355.

Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects.
Annual Review of Psychology, 32(1), 89–115.

Nosofsky, R. M. (1984). Choice, similarity, and the context theory
of classification. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10, 104–114.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-
categorization relationship. Journal of Experimental Psychology:
General, 115, 39–57.

Nosofsky, R. M. (1987). Attention and learning processes in the
identification and categorization of integral stimuli. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 13,
87–109.

Nosofsky, R. M. (1988). Exemplar-based accounts of relations between
classification, recognition, and typicality. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14, 700–708.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological Review,
101, 53–79.

Nosofsky, R. M., & Zaki, S. R. (2002). Exemplar and prototype mod-
els revisited: Response strategies, selective attention, and stimulus
generalization. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 28, 924–940.

Nosofsky, R. M. (1988). Exemplar-based accounts of relations between
classification, recognition, and typicality. Journal of Experimental
Psychology: learning, memory, and cognition, 14(4), 700.

Nosofsky, R. M. (1991). Tests of an exemplar model for relating
perceptual classification and recognition memory. Journal of
experimental psychology: human perception and performance,
17(1), 3.

Nosofsky, R. M., Cao, R., Cox, G. E., & Shiffrin, R. M. (2014). Famil-
iarity and categorization processes in memory search. Cognitive
Psychology, 75, 97–129.

Nosofsky, R. M., Cox, G., Cao, R., & Shiffrin, R. (2014). An
exemplar-familiarity model predicts short-term and long-term
probe recognition across diverse forms of memory search. Journal
of Experimental Psychology Learning,Memory, and cognition, 40,
1524–39.

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley, S. C., &
Glauthier, P. (1994). Comparingmodes of rule-based classification
learning: A replication and extension of Shepard, Hovland, and
Jenkins (1961). Memory & Cognition, 22(3), 352–369.

Nosofsky, R. M., Little, D. R., Donkin, C., & Fific, M. (2011). Short-
term memory scanning viewed as exemplar-based categorization.
Psychological review, 118(2), 280.

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-
exception model of classification learning. Psychological review,
101(1), 53–79.

Nosofsky, R. M., & Zaki, S. R. (2003). A hybrid-similarity exemplar
model for predicting distinctiveness effects in perceptual old-new

123

https://github.com/arjundevraj/rational-categorization
https://github.com/arjundevraj/rational-categorization
https://github.com/arjundevraj/word_categorization
https://aspredicted.org/yq984.pdf
https://aspredicted.org/yq984.pdf
https://aspredicted.org/9me7s.pdf


Psychonomic Bulletin & Review

recognition. Journal of Experimental Psychology: Learning,Mem-
ory, and Cognition, 29(6), 1194.

Palmeri, T. J., & Nosofsky, R. M. (1995). Recognition memory for
exceptions to the category rule. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21, 548–568.

Palmeri, T. J., & Nosofsky, R. M. (1995). Recognition memory for
exceptions to the category rule. Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 21(3), 548.

Posner,M. I.,&Keele, S.W. (1970). Retention of abstract ideas. Journal
of Experimental Psychology, 83, 304–308.

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas.
Journal of Experimental Psychology, 77 (3, Pt.1), 353–363.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive
Psychology, 3, 382–407.

Rojahn, K., & Pettigrew, T. F. (1992). Memory for schema-relevant
information: A meta-analytic resolution. British Journal of Social
Psychology, 31(2), 81–109.

Sakamoto, Y., & Love, B. C. (2004). Schematic influences on cate-
gory learning and recognition memory. Journal of Experimental
Psychology: General, 133(4), 534–553.

Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of
dot-pattern classification and recognition. Journal of Experimental
Psychology: General, 121, 278–304.

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early
epochs of category learning. Journal of Experimental Psychology,
24, 1411–1436.

Zeng, T., Tompary, A., Schapiro, A. C., & Thompson-Schill, S. L.
(2021). Tracking the relation between gist and item memory over
the course of long-term memory consolidation. eLife, 10, e65588.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Reconciling categorization and memory via environmental statistics
	Abstract
	Background
	Prototype model
	Exemplar model


	Experiment 1
	Methods
	Procedure
	Participants
	Model fitting

	Results
	Behavioral results
	Model results


	Experiment 2
	Methods
	Procedure
	Participants
	Model fitting

	Results
	Behavioral results
	Model results


	General discussion
	Appendix
	A. Models containing additional parameters, fitted for the entire experiment per participant
	B. Models containing additional parameters, fitted for consecutive sets of 56 trials per participant
	C. Accuracy per stimulus in the experimental condition
	D. Comparison of model predictions to participant responses
	E. Confirming the results using simulated data

	References


