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ABSTRACT 
In brain-computer interface (BCI) systems, the non-stationarity of brain signals is known to be a 
challenge for training robust classifiers as other brain processes produce signals that coincide with 
those resulting from the desired brain activity. One source of interference is the user's cognitive 
response to the provided BCI feedback. In the case of motor imagery paradigms, this feedback can 
for instance be a cursor moving on the screen. The response to such feedback has been shown in 
general to be a source of noise that can add to the non-stationarity of the brain signal; however, in 
this work, we show that the user’s brain response to this feedback can be used to improve the BCI 
performance. We first show in a motor imagery task that the user’s brain responds to the direction 
of cursor movement, which is different for the cursor moving towards or away from the target (i.e. 
BCI feedback), and this feedback-related information is present in frequency bands similar to those 
used in motor imagery. Next, we propose a classifier that combines the user response to feedback 
together with the motor imagery signal itself, and show that this combined classifier can significantly 
outperform a conventional motor imagery classifier. Our results show an average of 11% and up to 
22% improvement in classification accuracy across 10 participants.

1.  Introduction

Brain-computer interface (BCI) systems collect and infer 
neural signals without the use of normal neuromuscular 
pathways [1–4]. These systems were originally developed 
for locked-in patients who suffer from amyotrophic lat-
eral sclerosis (ALS) or brainstem stroke syndrome. Motor 
imagery (MI) – where a user imagines a movement with-
out producing it – enables effective non-invasive BCI 
control when measured with EEG [5]. Imagined move-
ments result in an event-related desynchronization (ERD) 
(decrease in power) in the mu band (8–13 Hz) [6, 7]; a 
similar ERD occurs in the beta band as well (14–30 Hz) 
[8, 9]. Motor imagery of different body parts results in 
somewhat different spatial patterns of desynchroniza-
tion across the scalp and the BCI uses these features to 
distinguish among the imagined movement classes. For 
example, a user might imagine moving their right hand to 
move a cursor in one direction and imagine moving their 
left hand to move the cursor in another. The targets can 
be mapped to different actions to allow a user to interact 
with the world (e.g. turn a light on or off or move a robot 
arm to one object or another).

Motor imagery BCIs have an advantage over other 
non-invasive BCIs as they require neither external stim-
ulation (as needed for steady-state visually evoked poten-
tial (SSVEP) [10] and P300-style BCIs [1, 11]) nor gaze 
control by the user. However, they also have their own 
challenges, such as their low reliability and information 
transfer rate, which can confound system use outside a 
controlled laboratory environment. This low reliability is 
due in part to the non-stationarity of the brain signals. 
As these BCIs are not dependent on external stimulation, 
they rely on signals created internally by the user and are 
susceptible to contamination from other brain activity of 
the user. Due to the low classification accuracies when 
classification is based on short time windows of EEG 
recordings containing the motor imagery signal, classifica-
tion results from several time windows of motor imagery 
EEG are combined in order to increase the reliability of 
target selection. The usual method is to use several small 
time windows of 500–1000 ms and provide feedback in 
the form of an incremental cursor movement towards the 
decoded target (for that window) [12]. In this way, the 
accuracy of hitting the desired target can be boosted at the 
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center midline channels). We introduce the term ‘error-re-
lated spectral perturbation’ (ErrSP) as a certain type of 
event-related spectral perturbation [32] to emphasize 
that we look beyond error-related potentials (ErrP), i.e. 
in multiple frequency bands and in a data-driven manner 
in the spatial domain.

We show that the polarity of the feedback (whether 
the cursor moves in the direction the user intended or 
in the opposite direction) is classifiable and that some of 
the information used for classification is contained within 
the same frequency bands that are important for motor 
imagery. We then present a method to make use of the 
classifiability of the brain response to such feedback. The 
idea is to combine the active motor imagery that the user 
is generating along with the passive response [33, 34] to 
the cursor movements to best determine the desired cur-
sor movement direction/target location. Our results show 
that the proposed approach significantly outperforms the 
conventional approach in motor imagery.

2.  Methods

2.1.  Paradigm

We collected data from 10 participants who were recruited 
from the UC San Diego student population after the study 
was approved by the University Institutional Review 
Board. The demographic details are specified in Table 1 
as age, gender, and handedness for each participant.

Participants were naive to BCI and signed a consent 
form approved by the UCSD Human Research Protections 
Program before participating in the experiment. The 
experiment consisted of two parts: in phase one, the 
participants were trained to perform kinesthetic motor 
imagery of left and right hands. It has been shown pre-
viously that kinesthetic motor imagery (‘imagine what it 
feels like to move your hand’) induces a stronger EEG 
signal [35] than visual motor imagery (‘imagine what your 
hand moving looks like’). This phase consisted of a total 
of 30 trials, divided into 3 blocks of 10 trials each. Each 
trial began by randomly showing an arrow pointing to the 

cost of more time. Improving the classification accuracy 
in each time step could greatly improve the information 
transfer rate of the system by reducing the number of steps 
required to hit the target accurately.

One important factor contributing to contamination 
of the motor imagery signal is the feedback provided by 
the BCI itself. It is well understood that BCI feedback is 
important to help the user learn to perform motor imagery 
and that providing feedback affects the performance of 
the user, e.g. [13–17]. One type of EEG signal that can 
be generated in response to feedback is the error-related 
potential (ErrP), which can help distinguish between 
movements in the desired direction and those in the 
non-desired direction [18]. Schalk et al. [19] reported that 
in an EEG-based cursor control BCI through modulation 
of mu and beta rhythms, participants elicited error-related 
potentials at the end of erroneous trials. Ferrez and Millan 
in [20] reported detection of error-related potentials in an 
experiment where the participants manually controlled 
the cursor movement. In another study [21], they showed 
the application of the detected error-related potential in 
improving the classification rate of a motor imagery task 
by undoing movements associated with detected error-re-
lated potentials. Artusi et al. [22] proposed a strategy 
of repeating trials when an error potential is detected. 
The authors in [23] and [24] improved performance of 
speller BCIs by correcting for the detected error from user 
feedback. Detection of errors for adaptably calibrating a 
code-modulated visual evoked potential (c-VEP) classifier 
was proposed in a c-VEP BCI [25]. Kreilinger et al. [26] 
showed the classifiability of error-related potentials dur-
ing continuous movement of an artificial arm provided 
as delayed feedback in a right-hand motor imagery task. 
Koerner [15, 27, 28] investigated methods to classify and 
use error-related potentials while the participant was 
performing motor imagery. Omedes et al. [29] investi-
gated error-related potentials in the frequency domain 
but only in the lower frequencies (theta band, 4–8 Hz). 
In an electrocorticographic (ECoG) BCI study, Milekovic 
et al. [30] found error-related neural responses in low-
er-frequency bands similar to ErrP studies in EEG as well 
as high gamma (beyond 60 Hz) carrying partially inde-
pendent information. However, high gamma information 
is difficult to obtain from EEG data.

The error-related potentials (ErrP) mentioned above 
are temporal signals usually observed in EEG signals fil-
tered between approximately 1 and 10 (or sometimes up 
to 20) Hz [20, 29, 31]. In this study, we investigate the 
response to visual feedback of motor imagery while the 
user is actively performing motor imagery. Our goal is 
to look for error-related information in other frequency 
bands (not just low-frequency traditional error-related 
potentials) and in other spatial locations (not just on the 

Table 1. Demographics of participants recruited from the UC San 
Diego student population.

Participant Age Gender Handedness
One 20 Female Left-handed
Two 18 Male Right-handed
Three 19 Female Right-handed
Four 22 Male Right-handed
Five 19 Male Left-handed
Six 18 Female Right-handed
Seven 15 Female Right-handed
Eight 34 Male Right-handed
Nine 22 Female Right-handed
Ten 19 Male Right-handed
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left or right to indicate the trial being a left- or right-hand 
motor-imagery trial respectively. Then a cross appeared at 
the center of the screen, and after one second the phrase 
‘motor imagery’ appeared on top of the cross. Participants 
were instructed to perform kinesthetic motor imagery as 
long as the cross and ‘motor imagery’ phrase were on the 
screen (i.e. for 4 s). At the end of this time period, par-
ticipants were provided with true feedback in terms of 
two bars, whose height reflected the average power in the 
mu band (8–13 Hz) of small Laplacian-filtered [36] sig-
nals from channels over the left (C3, FC3) and right (C4, 
FC4) motor and pre-motor cortices [6]. Participants were 
instructed that they should aim for maximizing the differ-
ence between the height of the two bars, with the higher 
being on the side of the imagery target. For instance, on a 
right imagery trial, the bar on the right side should have a 
greater height than the one on the left and this difference 
should be as large as possible (though the participants 
were not informed of the reason, this is because the desyn-
chronization –decrease in power – is greater on the side 
contra-lateral to the imagined body part.) The powers of 
the two bars were scaled if the larger power was greater 
than a threshold so that the bar heights were visualizable 
on the monitor. The bars were presented on the screen 
for 2 s and the inter-trial interval was set to about 10 s – a 
random duration between 0 and 1 s was added to the rest 
period to prevent adaptation. Phase 1 was designed to be 
a short training session to give participants the chance to 
learn how to perform discriminable motor imagery dur-
ing phase 2. Phase 2, which will be described next, is the 
main part of the experiment; all analysis and the reported 
results are from data collected during this phase.

In phase 2, participants were instructed to use motor 
imagery to move a cursor on a horizontal line on the mon-
itor to hit a target on the left or right. This paradigm is 
an extension to what was originally proposed in [15, 28]. 

Each trial began by showing the cursor in the center of 
the screen and the target at either end on the right or left 
side. The cursor and target were each represented as a 
circle having 2 cm diameter, and colored blue and white 
respectively. The center position (where the cursor would 
begin moving from) was three steps away from both right 
and left sides where the target would appear. After 1.5 s 
the target vanished to reduce visual distraction for par-
ticipants and ensure that classification was not based on 
a visual signal. The cursor moved every 1 s based on a 
pre-determined sequence of movements. Each trial ended 
when the cursor hit the target position (success) or the 
other end of the screen (failure). An example of the para-
digm is presented in Figure 1(left). There were 10 blocks 
in this phase, each composed of 20 trials. Participants’ 
performance within the past block and the overall per-
formance were provided on the screen after each block. 
Participants were misled to believe they were controlling 
the cursor while in fact sham feedback was used to keep 
the stimuli consistent among them. Particpants were told 
that performances above a certain level would be rewarded 
monetarily (over the regular compensation). During the 
rest period in between the trials, the participants kept their 
eyes open but did not fixate on the center of the moni-
tor. They could look around and blink normally. During 
the rest period in between blocks, the participants had as 
much time as they wanted to relax and stretch out and 
close their eyes and take some rest.

As mentioned earlier, the cursor followed a pre-deter-
mined pattern which was determined pseudo-randomly 
with a few conditions enforced: target hit rate for the 
blocks varied between 60 and 90%; in each trial – from 
the cursor beginning in the center until the end – at most 
three changes in direction were allowed; no more than two 
consecutive changes in direction were possible; and finally, 
the cursor started in the middle of the screen and ended 

Figure 1.  Left: one trial of the paradigm in the second (main) phase of the experiment. The participants were instructed to move the 
cursor to the target with motor imagery of their left or right hands. Right: bipolar electrode placements on each arm.
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the paper represents this time window after each cursor 
movement and classification is explored at this level. This 
interval was selected to take into account the time that it 
took for the participant to perceive the cursor movement. 
Note that in general for reporting BCI performance, it is 
standard to consider all time intervals in the course of cur-
sor sequence/trial, beginning in the middle of the screen 
and ending at either side (right or left), and to compute 
accuracy on this scale in terms of the hit-rate for hitting 
the correct target. However, as our goal is to look for the 
user response to feedback in short-time recordings of EEG 
while the user is performing motor imagery, we compute 
accuracy on a single step basis (only the time periods 
between two consecutive cursor movements).

Common spatial patterns (CSP) were applied to extract 
the top three filters for each class and in each frequency 
band [44]. After applying the trained CSP filters, fea-
tures were extracted as the log of the power through each 
filter for each step. Other than log power in the afore-
mentioned frequency bands, different features were also 
extracted from the temporal signal (single-step version 
of the event-related potential [ERP]). The pre-processed 
data were bandpass filtered from .5 to 10 Hz, with an FIR 
filter comprising 500 taps. Signals in each channel were 
averaged in non-overlapping 50 ms windows from 150 ms 
to 950 ms in the time domain and these values from chan-
nels Cz, Pz, CPz, and Fz were selected as ERP features.

Each step, that is each cursor movement, depending 
on the location of the target (either on the right or left) 
and the movement (towards [good] or away from the 
target [bad]), can be divided into four categories: good-
right (GR), good-left (GL), bad-right (BR), and bad-left 
(BL). Classification in all cases described next, was done 
on balanced classes, i.e. the number of steps in GR, BR, 
GL, and BL classes were balanced by randomly removing 
steps from classes with a higher number of steps. Linear 
discriminant analysis (LDA) classification [45, 46] was 
performed over each cursor movement with two differ-
ent classifiers: one being the conventional right/left (R/L) 
classification to classify the motor imagery signal, and the 
other classifying the ‘goodness’ of each cursor movement, 
i.e. to decide whether the cursor moved toward the tar-
get – good movement – or away from the target – bad 
movement. We call the latter a good/bad (G/B) classi-
fier (in contrast to the standard R/L). Since we looked 
into two different sets of features for the G/B classifier, 
i.e. power and ERP features, we name the two G/B-p and 
G/B-erp accordingly. We present classification results for 
R/L, G/B-p, and G/B-erp classifiers separately, as well as 
for combinations of these classifiers, as discussed next.

Our first attempt to combine the two R/L and G/B-p 
classifiers is within each frequency band (per-frequen-
cy-band classifier). For each step, the probabilities of 

at the right or left side of the monitor (not in other loca-
tions). The sequence of trials and the cursor movement 
pattern were kept the same for all participants and was 
designed to have an adequate number of cursor move-
ments towards and away from the target.

2.2.  Data collection and processing

Data were collected with a 64-channel BrainAmp system 
(Brain Products GmbH), with electrodes arranged accord-
ing to the International 10–20 system [37]. The impedance 
of the electrode connectivity was adjusted to be below 6 
kΩ. Aside from EEG data, EMG data were recorded with 
the same system through bipolar electrodes, one on the 
upper forearm and another on the wrist of each hand, as 
shown in Figure 1(right). Both EEG and EMG data were 
collected at 5000 Hz sampling rate and downsampled to 
500 Hz for further processing.

Pre-processing was done in MATLAB [38] and 
EEGLAB [39]. Data were first band-pass filtered between 
1 and 200 Hz with an FIR filter with 500 taps and the 
Cleanline plug-in [40] was applied to remove the line 
noise. Data sections contaminated with large muscle arti-
facts were identified visually and removed. The rejected 
sections contained less than 5% of the data recorded dur-
ing trials. Next, one to five channels with high power in 
the higher frequencies (above 60 Hz), indicating channels 
possibly contaminated by muscle or other artifacts, were 
removed. All these channels were from electrodes over 
temporal sites. Then, the EEG data were epoched into 
500 ms non-overlapping intervals and automatic artifact 
rejection – ������� and ��������� – from EEGLAB 
was applied to remove at most 10% of the data. Then 
Infomax ICA decomposition [41] was applied and ICA 
components were saved. Afterwards, the raw data were 
once more band-pass filtered between .1 and 50 Hz, and 
the data sections contaminated by large muscle artifacts 
were visually identified and removed. No epoching or 
automatic artifact rejection was performed in this round 
and only ICA components that were saved earlier were 
applied to remove muscle and eye artifacts based on the 
instructions in [39].

2.3.  Classification

Data were band-pass filtered with an FIR filter with 500 
taps in the following frequency intervals: 1–3, 2–5, 4–7, 
6–10, 7–12, 10–15, 12–19, 18–25, 19–30, 25–35, and 
30–40 Hz. These intervals were selected to cover low and 
high theta, mu, and beta frequency bands while overlap-
ping to compensate for individual differences [42, 43]. 
The pre-processed data were epoched 150 to 950 ms after 
each cursor movement. The notion of step in the rest of 
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direction of movement as described earlier. We compare 
this with across-frequency-bands [R/L]+[G/B-erp] clas-
sifier that uses ERP features instead of power features in 
a similar way. Translation of G/B-erp scores to R/L was 
performed in the same way as translation of G/B-p scores 
to R/L, as explained earlier.

The ultimate proposed classifier is one that uses all 
sets of available features described earlier. Therefore, we 
propose a combined across-frequency-bands [R/L]+[G/B-
p]+[G/B-erp] classifier that uses motor imagery informa-
tion as well as the state of the participant with respect to 
each cursor movement in both frequency (G/B-p) and 
time (G/B-erp) domains. Similar to the [R/L]+[G/B-p] 
classifier, the frequency bands in which R/L and G/B-p 
perform above chance level with respect to the number of 
steps with significance level of .01 [42, 47] were selected. 
LDA scores for the G/B-erp classifier were concatenated to 
the selected G/B-p scores, while translated to R/L based on 
the observed cursor direction of movement as described 
earlier. A logistic regression classifier was trained over all 
three sets of scores: R/L as well as translated G/B-p and 
G/B-erp. As before, the test data (steps) remained unseen 
during both parts of training the classifier.

EMG data were collected to confirm that classifying 
right-left motor imagery is not possible from arm/wrist 
movements. Data from the bipolar channels on the fore-
arm and wrist on each hand were bandpass filtered from 
10 to 100 Hz with an FIR filter with 500 taps. The line noise 
was removed with the Cleanline plug-in [40] in EEGLAB 
[39]. Data were epoched 0 ms to 1000 ms after each cursor 
movement and the log power of the signal was used as 
the feature for classification in a separate control classifier 
using LDA.

In all of the results reported next, we made sure that 
train and test steps (beginning from the feature extrac-
tion phase) were absolutely separate subsets of steps and 
performed multiple 10-fold nested cross validations for 
all classification results.

3.  Results

Table 2 compares the classification results for the com-
bined-across-the-frequency bands R/L classifier that uses 
classifier scores trained on several different frequency 
bands and the conventional R/L classifier trained on fea-
tures over one 7–30 Hz band. A paired-sample two-tailed 
t-test shows that the R/L classifier combined across multi-
ple frequency bands performs significantly better for par-
ticipants 4, 6, and 8. For the rest of the participants, the 
performance is not significantly different. We decided to 
continue using the combined-across-the-frequency-bands 
R/L classifier as later on we are interested in looking at 
both R/L and G/B classifiers in multiple frequency bands 

belonging to the right class and good class are considered 
as scores from the R/L and G/B-p classifiers respectively. 
However, to combine the two output features consistently 
in one classifier, the direction of the observed cursor 
movement must be taken into account to allow transla-
tion of the G/B outputs into the R/L output space, since 
the output of the combined classifier is to determine the 
motor imagery intention. If the cursor moved to the right, 
then the movement was a GR or BL. Therefore, the G/B-p 
classifier maps to R/L space; hence, the probability of 
belonging to the good class is the same as the probability 
of belonging to the right class. On the other hand, if the 
cursor moved to left, the movement was either GL or BR. 
In this case, the G/B-p classifier maps to L/R as opposed to 
R/L. Therefore, the probability of being in the good class is 
the same as the probability of being in the left class; hence, 
the G/B score is translated by one minus the probability 
of belonging to the good class. We call this process ‘trans-
lation of features based on the observed cursor direction 
of movement’. After translation, R/L and G/B-p classifier 
scores were combined through logistic regression.

We also propose a combined R/L and a combined 
G/B-p classifier that both use the features across all fre-
quency bands (across-frequency-bands classifiers). These 
classifiers train a logistic regression over the scores from 
frequency bands that show R/L or G/B-p classification 
rates above chance level with respect to the number of 
steps with significance level of .01 [42, 47]. Note that the 
test data (steps) remained unseen during the training ses-
sion, including the logistic regression part. To see whether 
dividing the signal into many frequency bands is more 
effective for discriminating R/L motor imagery than using 
one classifier over one 7–30 Hz frequency band, we com-
pare the performance of the combined across-frequen-
cy-bands R/L classifier with that of a conventional R/L 
classifier that trains an LDA classifier on the log power 
features from the top three CSP filters for each class in 
one 7–30 Hz frequency band.

To make use of the responses to the ‘goodness’ of 
cursor movement, we propose to augment the R/L 
across-frequency-bands classifier to a [R/L]+[G/B-p] 
across-frequency-bands classifier that uses motor imagery 
information as well as the state of the participant with 
respect to each cursor movement in relevant frequency 
bands. For each participant, this classifier selects LDA fea-
tures in terms of probabilities of belonging to each class, 
based on frequency bands with significantly above chance 
R/L or G/B-p classification rates. The chance level was 
calculated based on the number of steps with significance 
level of .01 [42, 47]. A logistic regression classifier was 
trained over LDA scores from the selected R/L and G/B-p 
frequency bands. Translation of G/B-p scores (probabili-
ties) into R/L was performed based on the observed cursor 
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As can be noted from the plots, the combined classifier 
outperforms the R/L classifier in frequency bands where 
G/B-p performs above chance level.

Note that, for all participants, lower-frequency bands 
(below 10 Hz) show above-chance-level G/B-p classifi-
cation performance. We hypothesized that this might be 
reflecting error-related signals that might be better clas-
sified using a conventional windowed-mean classifier on 
the low-pass-filtered temporal signal. In order to inves-
tigate whether G/B-p classifiers and G/B-erp classifiers 
are classifying different signals in both lower and higher 
frequency ranges, we looked at the class conditional cor-
relation coefficients between the real-valued classifier 
outputs of the G/B-p and the G/B-erp classifiers. We did 
this separately for the good and bad classes to exclude 
significant correlation that may result when both classifi-
ers perform above chance. We calculated the correlation 
coefficient between the LDA scores computed based on 
each classifier in each step. Our results show that there 
are no significant correlations in higher-frequency bands 
except for participants 6 and 10, though they are fairly low 
valued – R below .15. This implies that in fact G/B-p (when 
performing above chance level) is using new information 
which is not considered by G/B-erp in the .5–10 Hz fre-
quency band. In fact the correlations between G/B-p and 
G/B-erp are small (and for some participants not signif-
icant) even in the lower frequencies. Thus we decided to 
keep all G/B-p features as well as the G/B-erp features in 
our proposed classifier [R/L]+[G/B-p]+[G/B-erp].

We introduce the term error-related spectral perturba-
tion (ErrSP) for CSP-filtered EEG data and calculated it for 
each participant: see Figures 3 and 4. In each frequency 
band, we ran 10-fold cross validation and found the top 
three CSP filters in each class for G/B classification in 
each fold. Next LDA was trained on the log-power of the 
CSP-filtered train data, and the LDA-weighted log power 
of CSP-filtered test data in each fold in 50 ms non-over-
lapping time windows was calculated. A paired-sample 
two-tailed t-test was run to measure the significance of 
the difference in good (G) and bad (B) classes in each 
time window and each frequency band. P-values are also 
plotted in Figures 3 and 4. These results show that there 
is classifiable information beyond the low-frequency ErrP 
on center-line channels which could be used in better 
detecting the polarity of feedback, i.e. whether the cursor 
is moving towards or away from the target.

Table 3 shows classification results for G/B-p and 
G/B-erp and [G/B-p]+[G/B-erp] classifiers. For each we 
ran paired-sample two-tailed t-tests between G/B-p and 
[G/B-p]+[G/B-erp] and another test between G/B-erp 
and [G/B-p]+[G/B-erp]. Whenever [G/B-p]+[G/B-erp] 
results in significantly higher performance compared to 
both G/B-p and G/B-erp, the result is specified in bold. 

including lower than alpha frequencies. Note that the clas-
sification rates that are reported here are after each cursor 
movement within a time window of length 800 ms.

To make sure that the results presented here are due to 
motor imagery and not actual movement execution, we 
performed R/L classification on EMG data as well. Table 
2 also shows the results for the R/L classifier on EMG 
data for each participant and the class conditional cor-
relation with the combined-across-the-frequency-bands 
R/L classifier on EEG data. To do so, we first corrected 
for different means between the right and left classes in 
each case and then calculated the correlation coefficient 
and the corresponding p-value for each participant. As 
Table 2 presents, participants 2 and 4 show significant 
correlation between R/L classifiers trained on EEG and 
EMG data; however, the correlation coefficient for par-
ticipant 4 is very small and the R/L classification rate on 
EMG data for participant 2 is only chance level. Therefore, 
we conclude that the classification rates reported for R/L 
classifier on EEG data are in fact from motor imagery and 
not actual movements. To be consistent, we also trained a 
G/B classifier on EMG recordings and found chance-level 
performance for all participants.

Figure 2 shows the results of LDA classification for R/L 
and G/B-p in each frequency band; i.e. the solid and dashed 
black lines. The magenta line shows the combined-per-fre-
quency-band R/L and G/B-p classifiers in each frequency 
band separately. Each point on the plots is represented 
as an error bar showing the mean and standard error of 
results from five instances of 10-fold cross validation. The 
dashed green line represents the chance level .5 and the 
solid green line indicates the chance level calculated based 
on the number of steps [47] with significance level of .05. 

Table 2. Comparison of conventional R/L classifier (7–30 Hz R/L) 
and the combined across-frequency-bands R/L classifier. The first 
number is the mean classification rate over five instances of 10-
fold nested cross validation and the second number is standard 
error. The significantly higher rates among the two are identified 
in bold. The fourth column presents the R/L classifier results on 
EMG data with mean and standard error over five instances of 10-
fold cross validation. The last two columns show the correlation 
coefficient and corresponding p-value between the combined-
across-the-frequency-bands R/L classifier on EEG data and the 
R/L classifier on EMG data.

Participant R/L
7–30 Hz 

R/L EMG
Corr. 
coef. p value

One .87 / .005 .86 / .005 .63 / .008 .008 .719
Two .60 / .010 .61 / .006 .54 / .008 .17 <.01
Three .68 / .012 .66 / .007 .55 / .010 .039 .069
Four .68 / .010 .63 / .009 .63 / .007 .080 <.01
Five .73 / .010 .74 / .007 .50 / .009 −.032 .277
Six .63 / .012 .56 / .008 .55 / .007 .029 .170
Seven .78 / .009 .77 / .007 .61 / .009 −.016 .466
Eight .79 / .010 .74 / .007 .56 / .008 −.018 .390
Nine .60 / .011 .60 / .008 .53 / .008 −.026 .379
Ten .57 / .010 .56 / .008 .56 / .007 −.001 .957
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Figure 2.   The black solid and dashed lines show the result of LDA classifiers on R/L and G/B-p respectively, trained on the individual 
frequency bands. The magenta line is the combined R/L and G/B-p classifier per frequency band.
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Figure 3.  ErrSP (left column) for G-B difference and p-values from paired-sample two-tailed t-tests between good and bad classes in 
participants 1–5 in various frequency bands/time bins. X-axis shows the time in ms after cursor movement and Y-axis the frequency 
bands. P-values are uncorrected but are only shown for p-values < 10−4.



BRAIN-COMPUTER INTERFACES﻿    9

Figure 4.  ErrSP (left column) for G-B difference and p-values from paired-sample two-tailed t-tests between good and bad classes in 
participants 6–10 in various frequency bands/time bins. X-axis shows the time in ms after cursor movement and Y-axis the frequency 
bands. P-values are uncorrected but are only shown for p-values < 10−4.
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G/B (either power, erp or power and erp) classifier out-
performs the R/L classifier significantly for all participants 
except for participant 3. It is worth noting that participant 
3 has G/B-p and G/B-erp classification rates very close 
to chance level (refer to Table 3) and it is not surprising 
that the combined classifiers do not outperform the R/L 
classifier. Interestingly, though, the performance of the 
combined classifier for this participant is not worse than 
our baseline R/L classifier. For easier visual comparison, 
the results of R/L in the second column and [R/L]+[G/B-
p]+[G/B-erp] in the last column are plotted as a bar plot 
for each participant in Figure 5. Our results show an aver-
age of 11% improvement in classification accuracy across 
10 participants.

4.  Discussion and conclusion

In this study we investigated error-related spectral per-
turbation to parse out the effect of error-related brain 
processes that may occur in the same frequency bands 
as the motor imagery signal. There are many studies in 
the literature that show the effect of feedback in EEG-
based BCI performance [13–17, 19, 20, 22, 26–28, 31, 48]; 
however, we believe that the use of learned error-related 
signals from multiple spectral bands and spatial loca-
tions combined with active BCI signals through learned 
weighted voting is unique. The learned weighted voting 
(for combining R/L and G/B) lets both the error-related 
features and the active BCI features (motor imagery in our 
case) have influence at the same time with the flexibility 
to let the classifier adjust to each participant individually. 
It is worth emphasizing that, at least in our 10 partic-
ipants, combining R/L with G/B-p and G/B-erp is not 
harmful even for participants with relatively poor G/B 
classification.

In this study, we used a sham feedback paradigm where 
the participants were presented pre-determined cursor 
movements but were misled to believe that they were in 

Note that for all participants except for participant 3, the 
combined classifier performs significantly better than 
either of the two pieces of information separately (with 
significance level of .05). Moreover, all participants except 
for 3, 4, and 8 show significantly improved combined clas-
sifier with significance level .01.

Table 4 presents the results for the R/L, [R/L]+[G/B-p], 
[R/L]+[G/B-erp], and [R/L]+[G/B-p]+[G/B-erp] classifi-
ers when information across all frequency bands is taken 
into account. The first number is the mean classification 
rate with three instances of 10-fold nested cross validation 
and the second number shows the standard error. Paired-
sample two-tailed t-tests were calculated for the proposed 
[R/L]+[G/B-p]+[G/B-erp] classifier, i.e. the last column 
in Table 4, in comparison with the R/L classifier, i.e. the 
second column in the same table, and if the difference is 
significant (with .01 significance level) the higher rate is 
identified in bold. We ran paired-sample two-tailed t-tests 
with .01 significance level to compare the R/L classifier 
with the [R/L]+[G/B-p] and [R/L]+[G/B-erp] classifiers as 
well. Our results show that R/L when combined with the 

Table 3.  Comparison of G/B-erp and G/B-p classification rates. 
The last column shows the results of the combined classifier. The 
first number is the mean classification rate over three instanc-
es of 10-fold nested cross validation and the second number is 
the standard error. Whenever the combined classification rate is 
significantly higher than both G/B-p and G/B-erp, the number is 
specified in bold.

Participant G/B-p G/B-erp G/B-p+G/B-erp
One .76 / .010 .73 / .007 .81 / .007
Two .73 / .010 .73 / .008 .77 / .009
Three .54 / .009 .60 / .009 .59 / .010
Four .74 / .010 .78 / .006 .81 / .011
Five .65 / .009 .66 / .008 .71 / .007
Six .71 / .009 .69 / .007 .75 / .009
Seven .75 / .009 .72 / .010 .79 / .007
Eight .67 / .012 .72 / .008 .75 / .010
Nine .76 / .009 .75 / .009 .81 / .008
Ten .70 / .012 .70 / .007 .76 / .009

Table 4.  Classification results for combined classifier across fre-
quency bands. The first number is the mean classification rate 
over three instances of 10-fold nested cross validation and the 
second number is the standard error. Whenever the results in the 
right-most column are significantly higher than the R/L results, 
numbers are specified in bold.

Participant R/L R/L+G/B-p
R/L+G/B-

erp
R/L+G/B-

p+G/B-erp
One .87 / .005 .89 / .006 .90 / .005 .91 / .006
Two .60 / .010 .76 / .009 .75 / .011 .78 / .006
Three .68 / .012 .68 / .008 .67 / .010 .68 / .010
Four .68 / .010 .79 / .008 .80 / .009 .84 / .008
Five .73 / .010 .76 / .009 .78 / .008 .80 / .007
Six .63 / .012 .71 / .011 .73 / .007 .75 / .009
Seven .78 / .009 .84 / .008 .83 / .007 .87 / .007
Eight .79 / .010 .81 / .007 .83 / .008 .84 / .009
Nine .60 / .011 .77 / .009 .75 / .009 .82 / .008
Ten .57 / .010 .69 / .009 .70 / .009 .74 / .009
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Figure 5.   Comparison of across-the-frequency-bands [R/L] and 
[R/L]+[G/B-p]+[G/B-erp] classifiers, from Table 4.
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bands across various tasks [29] and associated it with 
error-related potentials, but they have not discussed 
this for higher-frequency bands. A related interesting 
question would be to investigate the underlying brain 
networks that are involved in generating the good/bad 
signal(s).
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